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Abstract

Weproposeaconformant likelihood-basedestimatorwithexogeneity restrictions (CLER)
for random coefficients discrete choice demandmodels that is applicable in a broad range of
data settings. It combines the likelihoods of twomixed logit estimators—one for consumer
level data, and one for product level data—with product level exogeneity restrictions. Our
estimator is both efficient and conformant: its rates of convergencewill be the fastest possible
given the variation available in the data. The researcher does not need to pre-test or adjust the
estimator and the inference procedure is valid across a wide variety of scenarios. Moreover,
it can be tractably applied to large datasets. We illustrate the features of our estimator by
comparing it to alternatives in the literature.

1 Motivation

First introduced in Berry et al. (1995, BLP95), random coefficients discrete choice demand

models provide a tractable framework to flexibly estimate substitution patterns betweenmany

differentiated products in the presence of price endogeneity. Since its introduction, this model

has been estimated using a wide array of datasets featuring consumer level data, product level

data, or amixture of both. We propose a likelihood-based estimator for BLP-stylemodels that

applies to all the above data settings. Intuitively, it combines the likelihoods of twomixed logit

estimators, one for consumer level data (assuming it is available), and one for product level data,

along with product level exogeneity restrictions. We impose no additional assumptions over

those posited in BLP95, which are also used in other estimators extendedwith consumer level

data (e.g., Petrin 2002; Berry et al. 2004a (BLP04); Goolsbee and Petrin 2004; Chintagunta and
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Dube 2005).

Researchers have applied varied approaches when confrontedwith different types of data

(e.g., consumer choices, market shares, or a combination of both). We note that the best achiev-

able convergence rate varies with (the relative growth rates of) data dimensions and other cir-

cumstances. We propose a single estimator that achieves the optimal rate and is efficient in a

wide variety of empirical settings. We call our estimator conformant for its ability to achieve the

optimal rate under a variety of circumstances. Conformancy is a novel property in this literature.

To fix ideas, consider first the case in which a large sample of consumer purchase data

is available. The basic structure of the demand model proposed in BLP is mixed (or random

coefficients) multinomial logit. The standardmultinomial logit MLE has nice computational

properties. For example, it is globally concave in the parameters, and the gradient andHessian

have simple expressions. Therefore, with consumer level data in hand, it is natural to consider

estimating a BLPmodel viaMLE using the individual likelihood of purchase. However, in order

to accommodate price endogeneity, the basic structure of BLP requires the estimation of product

(bymarket) quality parameters.1 It can be demanding of consumer level data alone to estimate

such a specification due to the presence of potentially many (hundreds, or even thousands,

depending on the application) product quality parameters.

To address this issue, we incorporate product level data on market shares. We view our

consumer level sample as a (perhaps small) subset of the population of individual choices repre-

sented by the observedmarket shares. From this perspective, the loglikelihood of both individual

consumer data (‘micro’ data) andmarket shares (‘macro’ data) consists of two terms: amicro

term following the mixed logit and a macro term that integrates over the distribution of con-

sumer characteristics in the population. This mixed-data likelihood estimator (MDLE) could be

used to estimate three types of parameters (1) unobserved preference heterogeneity (often re-

ferred to as “random coefficients” in the literature); (2) observed preference heterogeneity based

on individual demographics (referred to as “demographic interactions”); and (3) product-specific

quality. However, there are two potential drawbacks to theMDLE approach. First, the identifi-

cation of unobserved preference heterogeneity depends on sufficient exploitable demographic

variation, as we describe in section 4.2. Second, this approach alone does not yieldmean tastes

for product characteristics, although one could incorporate a second step which accommodates
1BLP95 andNevo (2000) have noted that product quality parameters could be used to separate the estimation of

‘nonlinear’ parameters that govern substitution patterns from the ‘linear’ parameters of themodel such as themean
price effects.
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endogenous characteristics (such as price).

Our full estimator extends theMDLE approachwith an additional term to directly incorpo-

rate information contained in the product level exogeneity restrictions of BLP95. This estimator

achieves the conformance property, so we refer to it as the Conformant Likelihood with Exo-

geneity Restrictions (CLER) estimator. The exogeneity restrictions are additional assumptions

on the data-generating process, providing a distinct source of identifying variation beyond the

likelihood. Themain benefit of CLER relative toMDLE arises when there aremore exogeneity

restrictions than product characteristics. In the presence of such overidentification, the extra

information can help identify the preference heterogeneity parameters evenwhen they are not

recovered usingMDLE alone. Indeed, as BLP show, with sufficient exogeneity restrictions, it

is possible to identify all model parameters even if the consumer sample size falls to zero. The

primary contribution of this paper is to provide an estimator that fully exploits these two sources

of identifying variation to achieve the fastest possible rate of convergence, efficiency, and valid

inference without relying on any pre-test of the data or tuning parameters.

The CLER estimator is compatible with all datasets in the applied literature of which we are

aware. In particular, it is well-behaved with consumer samples of any size, from zero to a full

census of themarket. The objective function comprises three terms that can diverge at different

rates: themicro loglikelihoodwith the consumer sample size, themacro loglikelihoodwith the

market size, and aGMMobjective function based on the product exogeneity restrictionswith the

number of products. These differing rates in the objective function are whatmake our estimator

conformant: the rates of convergence will adjust accordingly and depend on the relative sample

sizes and strength of information from the three terms.2

The conformance property results from the CLER estimator incorporating two distinct

sources of identification for the consumer heterogeneity parameters. As we explain in section 5,

observed variation in demographics identifies both observed and unobserved taste heterogeneity

as long as that variation shifts consumers’ utility across products.3 As emphasized byGandhi and

Houde (2020, GH20), overidentifying product level exclusion restrictions can also identify taste

heterogeneity. If the number of sampled consumers is much larger than the number of prod-

ucts, then exploiting the identifying information (if present) in themicro sample will produce a

faster convergence rate than relying on product level exclusion restrictions. In this case, MDLE
2The use of the plural ‘rates’ is because different elements of our estimator vector converge at different rates.
3Berry andHaile (2020)make a similar point in a nonparametric context.
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and CLER are asymptotically equivalent and efficient. Adding the product level exclusions to

the estimator is useful when the consumer sample is small (or not present) or its identfying de-

mographic variation is weak (or nonexistent). Note that when this variation is nonexistent, the

information used by theMDLE estimator is insufficient for identification. The CLER estimator,

on the other hand, still converges at the optimal rate and is efficient because it also exploits the

product level exclusions. However, the rate of convergence of some parameter estimates will

then be slower (though still optimal) due to the slower divergence rate of the product restric-

tions component compared to themicro likelihood. Our estimator also covers the intermediate

cases between the above two extremes without adjustment and the case where different data is

available in differentmarkets.

Efficiency depends on two features of the objective function. First, the likelihood andmo-

ments portions of the objective function are uncorrelated because the loglikelihood sums over

individuals, treating product qualities as parameters. In contrast, the moments component

involves sums over products where variation in product quality gives rise to the product level

structural error term. The optimal weight matrix to use is the same as that in standard GMM

estimation, except now the scalematters to properly weight across likelihood andGMM terms,

as we describe in sections 3.2 and 4.1.

We show that conducting inference using formulas familiar from the standard extremum

estimation framework is asymptotically valid. We formally establish consistency and asymptotic

normality in theorem1,whoseproof isnonstandard toaccommodate theconformance featuresof

theCLER estimator. Validity obtains regardless of the relative divergence rates4 and even though

the vector of product quality parameters increases in dimension. More generally, the inference

procedure is robust to the source of identification, i.e. the inference procedure is valid bothwhen

themicro data provide sufficient information to recover the taste heterogeneity parameters and

when such informationmust come from the product level exclusion restrictions: one does not

have to specify or know.

Another advantage of the CLER estimator over alternativemethods popular in the literature

that use an objective function with a constraint (product shares must match choice probabilities

exactly) is more robust inference. In particular, methods that impose a share constraint require

that the total number of consumers 𝑆 in themicro sample across all markets is negligibly small
4E.g., the number of markets, the number of consumers in the population of each market, the number of

consumers in themicro sample, and number of products.
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compared to the smallest market sizemin𝑚 𝑁𝑚 and, if the product quality parameters are of

interest (e.g., as in merger simulation exercises), even that 𝑆 is negligibly small compared to
min𝑚 √𝑁𝑚.5 Absent these additional restrictions, the computed standard errors would be too

small.

While thestatisticalpropertiesof ourestimatormake itof theoretical interest, it is also suitable

for applied work. Onemight expect that the high dimensionality of the parameter space due to

the product quality parameters would be intractable. However, we show in section 7 that the

structure of the objective function simplifies the computational problem considerably. We have

verified that this procedure can be used successfully for problemswith over 100,000 products

andmillions of consumers. Another concernmight be the bias due to numerical integration

to compute choice probabilities. We discuss numerical integration in section 7.2 and provide a

Monte Carlo illustrating performance in section 9.2.4.

The CLER estimator is most directly comparable to GMM approaches based on micro-

moments (e.g. Petrin 2002 and BLP04). In relatedwork, Conlon andGortmaker (2023, CG23)

provide a comprehensive discussion of best practices for incorporating moments based on a

variety of types of auxiliary consumer level data into this canonical GMM-based estimation of

BLP-stylemodels.This framework does not share our properties of efficiency and conformancy.

That said, the GMMapproachmay be better suited to certain types of data, for example, a situa-

tion when the researcher only has access to summary statistics from an individual-level survey

instead of the individual responses themselves or where themodel is so complex that analytic

formulas for theHessian are difficult to obtain, whichwouldmake computation of our estimator

more expensive.

Other researchers have proposed using the likelihood of consumer data in estimating BLP-

stylemodels (e.g., Goolsbee and Petrin, 2004; Chintagunta and Dube, 2005; Train andWinston,

2007; Bachmann et al., 2019).6 The key difference with our approach is twofold. First, they use a

two-stage procedure, and so cannot take full advantage of the combination of consumer choice

data, product market shares, and over-identifying product level restrictions. Second, like Petrin

(2002) and BLP04, these papers recover product quality parameters using the BLP inversion,

whereas our approach achieves efficiency by estimating product quality parameters using the
5In BLP95 and BLP04 the𝑁𝑚’s are assumed to be effectively infinite.
6MLE is a popular choice for estimating discrete choicemodels that do not have endogenous product character-

istics; see e.g. hospital choice as in Ho (2006) and urban/locationmodels such as Bayer et al. (2007). Our framework
nests these applications.
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entire CLER objective function. Another related paper is Allen et al. (2019), who combine the

likelihood of an equilibrium searchmodel with a penalty term of moment equalities.

Our approach has broad applicability and is appropriate for many demand estimation appli-

cations where the researcher has both product level data on shares and consumer level data on

purchases. Berry andHaile (2014) showed identification of objects in a nonparametric class of

thesemodels using product level data and sufficient instruments; Berry andHaile (2020) shows

how observing consumer level data reduce the number of instruments required. Although

BLP04 and Petrin (2002) are canonical examples of applications, there aremanymore examples

of applied research where demand is estimated with product level and consumer level data. An

incomplete list of examples includes Goeree (2008), Ciliberto and Kuminoff (2010), Crawford

andYurukoglu (2012), Starc (2014), Wollmann (2018), Crawford et al. (2018), Hackmann (2019),

Neilson (2019), Backus et al. (2021), Grieco et al. (2023),Montag (2023), and Jiménez-Hernández

and Seira (2021). A specific example common in economics andmarketing is when researchers

combine grocery store scanner data with household level data, for example as in the IRI data

or the Kilts Center Nielsen data. Examples include Chintagunta and Dube (2005) (IRI) and

Tuchman (2019) and Backus et al. (2021) (Nielsen).

Finally, our problem and approach share features with several strands of the econometrics

literature. For instance, Imbens and Lancaster (1994) also consider the problem of combining

different sources of data albeit that there themicro data are assumed to provide identification

and the different data sources are either independent with sample sizes growing at the same rate

or themacro data can be considered to be of infinite size. Ridder andMoffitt (2007) provide a

survey of methods to combine different data sets and van den Berg and van der Klaauw (2001)

combine data sets to estimate a durationmodel. Further, it is common in the panel data literature

to have the dataset grow in different dimensions at different rates (e.g. Hahn andNewey, 2004),

but we know of no examples in which there are asmany growth dimensions to consider as here:

the number of markets and products, the population sizes in each market, and the number

of sampled consumers in themicro sample. Third, having different elements of the estimator

vector converge at different rates is a common feature of the semiparametric estimation literature

(e.g. Robinson, 1988). Lastly, Abadie et al. (2020) consider the case of sample size approaching

population size; their problem is different from the ones studied here.

There are several econometrics papers that cover random coefficient discrete choicemodels

with only product-level data. The first such paper is Berry et al. (2004b, BLiP04). Freyberger
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(2015) andHong et al. (2021) are closer in spirit to ours in that the number of markets increases,

whereas in BLiP04 the number of products increases but the number of markets is fixed. Myojo

andKanazawa (2012) showhowadditionalmoments canbe constructedon thebasis of consumer

level data and discuss supply side restrictions.

The following section reviews the random coefficients demandmodel and the data available

in our setting. Section 3 proposes our estimator. Conformance and efficiency properties are de-

scribed in section 4. Section 5 explores the source of variation in the demographic data exploited

to identify taste heterogeneity. Section 6 illustrates the trade-offs in going from the CLER estima-

tor to the GMM estimators that are commonly used in applied work. Section 7 argues for the

computational tractability of the CLER estimator; we provide a software package to demonstrate

feasibility and facilitate implementation.7 Section 8 introduces our inference procedure. Sec-

tion 9 compares the finite sample properties of CLER relative toMDLE and a canonical GMM

estimator. Section 10 concludes.

2 RandomCoefficients DemandModel

This section briefly reviews the random coefficients discrete choice demandmodel and describes

the data used by our estimator. Themodelmatches that of BLP95with slightly adjusted notation

for clarity. Wewill assume the researcher has access to both product level shares and a sample

consumer level choices. Importantly, our estimator will assume that consumer level choices

represent a subset of consumers on which the market level shares are based. This is in slight

contrast to the previous literature, which has treatedmicro andmacro data as different samples.

2.1 Model

The econometrician observes𝑀markets. In eachmarket𝑚, 𝐽𝑚 products are available for pur-

chase. A product 𝑗 in market𝑚 is described by the tuple (𝑥𝑗𝑚, 𝜉𝑗𝑚), where 𝑥𝑗𝑚 = ( ̃𝑥𝑗𝑚, 𝑝𝑗𝑚)
is a 𝑑𝑥-dimensional vector of observed characteristics of the product and 𝜉𝑗𝑚 is a scalar unob-

served product attribute. The only distinction between ̃𝑥𝑗𝑚 and 𝑝𝑗𝑚 (typically price) is that ̃𝑥𝑗𝑚

is uncorrelated with 𝜉𝑗𝑚, so we frequently refer only to 𝑥𝑗𝑚 for notational convenience. There

are𝑁𝑚 consumers inmarket𝑚. Consumers are characterized by (𝑧𝑖𝑚, 𝜈𝑖𝑚, 𝜀𝑖⋅𝑚)where 𝑧𝑖𝑚 is a

𝑑𝑧-vector of potentially observable consumer characteristics (such as income or location), and

𝜈𝑖𝑚 is a 𝑑𝜈 ≤ 𝑑𝑥-vector of unobservable consumer taste shocks to preferences for product charac-
7The Grumps package is available at https://github.com/NittanyLion/Grumps.jl.
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teristics. Finally 𝜀𝑖⋅𝑚 is a𝐽𝑚 +1-vector of idiosyncratic product taste shocks for each product and
an outside good (e.g., no purchase) that is distributed according to the standard Type-I extreme

value (Gumbel) distribution. In the population, 𝑧𝑖𝑚 and 𝜈𝑖𝑚 aremutually independent and dis-

tributed according to known distributions𝐺𝑚 and𝐹𝑚, respectively. In practice, the distribution

of 𝑧𝑖𝑚 is typically taken from external data (such as the population census)while the distribution

of 𝜈𝑖𝑚 is typically assumed to be a standard normal and independent across components of 𝜈𝑖𝑚.

A consumer in market 𝑚 maximizes (indirect) utility by choosing from the 𝐽𝑚 available

products and the outside good, indexed by zero. Let 𝑦𝑖𝑗𝑚 = 1 if consumer 𝑖 inmarket𝑚 chooses

product 𝑗 and zero otherwise. Utility of consumer 𝑖when purchasing product 𝑗 inmarket𝑚 is

𝑢𝑖𝑗𝑚 = 𝛿𝑗𝑚 + 𝜇𝑧𝑖𝑚
𝑗𝑚 + 𝜇𝜈𝑖𝑚

𝑗𝑚 + 𝜀𝑖𝑗𝑚, (1)

where 𝛿𝑗𝑚 = 𝑥⊺
𝑗𝑚𝛽 + 𝜉𝑗𝑚 represents themean utility for product 𝑗 for consumers inmarket𝑚,

𝜇𝑧𝑖𝑚
𝑗𝑚 = 𝜇𝑧(𝑥𝑗𝑚, 𝑧𝑖𝑚; 𝜃𝑧) represents deviations frommean utility due to observed demographic

variables 𝑧𝑖𝑚, and 𝜇𝜈𝑖𝑚
𝑗𝑚 = 𝜇𝜈(𝑥𝑗𝑚, 𝜈𝑖𝑚; 𝜃𝜈) are deviations due to taste shocks 𝜈𝑖𝑚. There is no

real need to assume 𝛿𝑗 has this linear form but this is themost common specification. Typically,

𝜇𝑧 is a linear combination of products of elements of 𝑥𝑗𝑚 and 𝑧𝑖𝑚 parameterized by 𝜃𝑧. As we

shall see below, some of our results depend on whether 𝜃𝑧 is such that 𝜕𝑧𝜇𝑧 = 0, i.e., when
changes in observed demographics do not affect utility. For notational ease, we assumewithout

loss of generality that this is true if and only if 𝜃𝑧 = 0, which corresponds to the typical case
just described. Finally, 𝜇𝜈 is typically a linear combination of product characteristics and taste

shocks parameterized by 𝜃𝜈. Utility of the outside good is normalized to 𝑢𝑖0𝑚 = 𝜀𝑖0𝑚. When

convenient, we collect the consumer heterogeneity parameters into the vector 𝜃 = [𝜃𝑧⊺, 𝜃𝜈⊺]⊺.
Themodel yields choice probabilities for consumer 𝑖 of selecting product 𝑗 conditional on

demographics 𝑧𝑖𝑚 and product characteristics 𝑥⋅𝑚 as a function of parameters,

𝜋𝑧𝑖𝑚
𝑗𝑚 (𝜃, 𝛿) = Pr(𝑦𝑖𝑗𝑚 = 1 | 𝑧𝑖𝑚, 𝑥⋅𝑚; 𝜃, 𝛿) = ∫

exp(𝛿𝑗𝑚 + 𝜇𝑧
𝑖𝑗𝑚 + 𝜇𝜈

𝑖𝑗𝑚)
∑𝐽𝑚

ℓ=0 exp(𝛿ℓ𝑚 + 𝜇𝑧
𝑖ℓ𝑚 + 𝜇𝜈

𝑖ℓ𝑚)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
s𝑗𝑚(𝑧𝑖𝑚,𝜈;𝜃,𝛿)

d𝐹𝑚(𝜈), (2)

where 𝛿0𝑚 = 𝜇𝑧𝑖𝑚
0𝑚 = 𝜇𝜈𝑖𝑚

0𝑚 = 0 for all 𝑖, 𝑚.

Similarly, unconditional choice probabilities, which correspond to expectedmarket shares,

are obtained by integrating 𝜋𝑧
𝑗𝑚 with respect to the distribution of consumer demographics,
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𝜋𝑗𝑚(𝜃, 𝛿) = Pr(𝑦𝑖𝑗𝑚 = 1 | 𝑥⋅𝑚) = ∫ 𝜋𝑧
𝑗𝑚(𝜃, 𝛿) d𝐺𝑚(𝑧).

In addition to the structure imposed on choice probabilities, themodel imposes product level

exogeneity restrictions of the form,8

𝔼(𝜉𝑗𝑚𝑏𝑗𝑚) = 0, (3)

where 𝑏𝑗𝑚 is a vector of instruments which includes ̃𝑥𝑗𝑚. Further, 𝑏𝑗𝑚 may contain additional

exogeneity restrictions. The literature has used various approaches such as cost shifters, BLP

instruments, Hausman instruments,Waldfogel instruments, and differentiation instruments

(see Gandhi and Nevo, 2021). These moment restrictions will serve two purposes. First, they

are needed to identifymean product utility parameters, 𝛽. Second, if 𝑑𝑏 > 𝑑𝛽 theymay provide

additional information that is potentially useful in estimating other model parameters. For

example BLP95 uses restrictions of this form to recover consumer heterogeneity parameters 𝜃 in
the absence of consumer level data.

2.2 Data

The researcher has access to two types of data on consumer choices. First, she observesmarket

level data on the quantity of purchases, the vector of characteristics 𝑥𝑗𝑚 of each product, and

the total market size,𝑁𝑚.9 Each consumer has unit demand and purchases either one of the

“inside” products or the outside good. That is, the researcher can construct market shares

𝑠𝑗𝑚 = 1
𝑁𝑚

𝑁𝑚

∑
𝑖=1

𝑦𝑖𝑗𝑚. (4)

Note that the observedmarket shares 𝑠⋅𝑚 need not equal choice probabilities𝜋⋅𝑚 due to the finite

population size, however 𝑠⋅𝑚
𝑝

→ 𝜋⋅𝑚 as𝑁𝑚 → ∞.

Second, for a subset of 𝑆𝑚 consumers, the researcher observes both the consumers’ choices

and their demographics. That is, the researcher observes {(𝑦𝑖⋅𝑚, 𝑧𝑖𝑚)} for these consumers. We
use𝐷𝑖𝑚 as a dummy variable to denote whether consumer 𝑖 is in this micro-sample. As wewill
describe below, ourmethodology combines themicro-sample with the product shares by inte-

8One could replace (3) with a conditional expectation and derive optimal instruments, which would produce a
two-step procedure in which each step has a condition of the form (3), with the instruments 𝑏𝑗𝑚 in the second step
generated from the first step.

9As in the previous literature, researchers need to observe ormake an assumption regarding𝑁𝑚 in order to
computemarket shares from purchase quantity data.
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grating out 𝑧𝑖𝑚 in the choice probabilities when individual 𝑖 is outside themicro-sample. We can
accommodate several forms of selection. In appendix Awe show that for random sampling and

deterministic selection on choices 𝑦𝑖⋅𝑚 (e.g., administrative data when outside good purchases

are not reported) no adjustments are needed. We further show how to accommodate selection

on demographics 𝑧𝑖𝑚.

3 Estimator

This section proposes the CLER estimator which combines the likelihood, �̂�(𝜃, 𝛿), of themicro
andmacro choice data and an efficient GMMobjective function Π̂ based on (3),

( ̂𝛽, ̂𝜃, ̂𝛿) = argmin
𝛽,𝜃,𝛿

(− log �̂�(𝜃, 𝛿) + Π̂(𝛽, 𝛿)) (5)

Notice that the likelihood is a function of (𝜃, 𝛿) but not 𝛽, whereas the product level moments
are functions of (𝛽, 𝛿) but not 𝜃. This separability has been noted previously in the literature, but
will play an important role in making our estimator computationally feasible. The following

two subsections describe the two terms of the objective function in detail. The first subsection

describes themixed data likelihood, which alone is the objective function for theMDLE. The

second subsection introduces the product level moments term, Π̂.

3.1 MixedData Likelihood

TheMDLE contains two parts relating to themicro andmacro data. To understand its elements,

first suppose thatwe observed {𝑦𝑖𝑗𝑚} for all𝑁𝑚 observations. Then the loglikelihoodwould be,10

log �̂�(𝜃, 𝛿) =
𝑀

∑
𝑚=1

𝐽𝑚

∑
𝑗=0

𝑁𝑚

∑
𝑖=1

𝑦𝑖𝑗𝑚 (𝐷𝑖𝑚 log𝜋𝑧𝑖𝑚
𝑗𝑚 (𝜃, 𝛿) + (1 − 𝐷𝑖𝑚) log𝜋𝑗𝑚(𝜃, 𝛿)) , (6)

The loglikelihood sums over all𝑁𝑚 consumers in themarket. If an observation 𝑖 is in themicro
data thenwesee 𝑧𝑖𝑚 andcanconditionon it,whereasotherwisewe integrate over thedistribution

of 𝑧𝑖𝑚 conditional on this consumer not being in the consumer sample.

Of course, we do not directly observe the choices of consumers who are not in the micro

sample. However, the loglikelihood can be equivalently written in terms of the consumer level

observations and themarket level share data,
10For expositional simplicity, we present notation for the cases of random selection or deterministic selection

on 𝑦𝑖⋅𝑚 into themicro sample. As discussed in appendix A, selection on demographics requires an adjustment to
account for sampling in𝜋𝑗𝑚.
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log �̂�(𝜃, 𝛿) =
𝑀

∑
𝑚=1

𝐽𝑚

∑
𝑗=0

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚 log
𝜋𝑧𝑖𝑚

𝑗𝑚

𝜋𝑗𝑚⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
micro

+
𝑀

∑
𝑚=1

𝑁𝑚

𝐽𝑚

∑
𝑗=0

𝑠𝑗𝑚 log𝜋𝑗𝑚
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

macro

, (7)

where the first term is the contribution of the consumer level data and the second term is the

contribution of themarket level data. In order to express the second term using observedmarket

shares, we add and subtract log𝜋𝑗𝑚 to control for the fact that the consumer level data represent

a subset of the consumers whomake up themarket. It is convenient to refer to the two terms of

the likelihood separately, so we define log �̂�mic and log �̂�mac as themicro andmacro terms of (7),

respectively. Alternatively, the estimator can be written by adjusting themacro term to avoid

double counting the consumers in themicro-sample:

log �̂�(𝜃, 𝛿) =
𝑀

∑
𝑚=1

𝐽𝑚

∑
𝑗=0

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚 log𝜋𝑧𝑖𝑚
𝑗𝑚

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
micro

+
𝑀

∑
𝑚=1

𝐽𝑚

∑
𝑗=0

(𝑁𝑚𝑠𝑗𝑚 −
𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚) log𝜋𝑗𝑚
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

macro

,

(8)

These two formulations, while equivalent, emphasize different features of the estimator so we

will refer to the one that is most convenient at the time.

TheMDLE recalls two common estimators in the discrete choice literature. When𝑁𝑚 =
𝑆𝑚—so that all consumers’ characteristics are observed—orwhen productmarket shares are

not observed, the likelihood simplifies to thewell knownmixed-logit likelihood. Indeed, identifi-

cation of (𝜃, 𝛿)using the log-likelihood alone follows from the arguments for identification in the

mixed-logit setting (Walker et al., 2007). However, when 𝑆𝑚 = 0, so only aggregate data is avail-
able, maximizing the likelihood is equivalent to imposing the share constraint from BLP and

related estimators, as we show in section 6.2. This leads to a second insight: without consumer

level data, (𝜃, 𝛿)would not be identified by the likelihood alone as there aremore parameters
than share constraints.

The MDLE objective makes full use of the consumer choice data (micro and macro). In

contrast to the traditional GMMestimator, there is no need to choosewhichmoments of the data

to include in the objective function, nor to determine theweighting betweenmoments. However,

it does not incorporate the product level exogeneity restrictions.

3.2 Product LevelMoments

The CLER estimator combines the MDLE objective with an additional term that penalizes

violations of the product level moments,
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Π̂(𝛽, 𝛿) = 1
2

̂m
⊺(𝛽, 𝛿)�̂� ̂m(𝛽, 𝛿) (9)

where for 𝐽 = ∑𝑀
𝑚=1 𝐽𝑚, 𝐽�̂� is the optimal GMMweight matrix for ̂m scaled to converge to the

inverse of 𝕍(𝑏𝑗𝑚𝜉𝑗𝑚) and

̂m(𝛿, 𝛽) =
𝑀

∑
𝑚=1

𝐽𝑚

∑
𝑗=1

𝑏𝑗𝑚(𝛿𝑗𝑚 − 𝛽⊺𝑥𝑗𝑚). (10)

Note that, unlike in standalone GMMestimation, the factor 1/2 in front of the ‘J statistic’ in (9)
matters since it affects the relative weight placed on the likelihood versus themoment compo-

nents of the objective function: the choice 1/2 is optimal as shall become apparent in section 4.1.
If the dimension of 𝑏𝑗𝑚 is the same as that of 𝛽, a situation we shall refer to as “exact iden-

tification of 𝛽” then 𝜃, 𝛿 are estimated off the likelihood portion and 𝛽 off the GMM portion.

Our estimator is then equivalent to a two-step estimator which estimates 𝜃, 𝛿 via MDLE and
subsequently estimates 𝛽 off Π̂. Additional restrictions result in overidentification of 𝛽which
can be used to aid the estimation of 𝜃. Indeed, then Π̂ will generally be positive so that both

log �̂� and Π̂ contribute to the estimation of 𝜃, 𝛿. However, because themicro log likelihood sums
over 𝑆 = ∑𝑀

𝑚=1 𝑆𝑚 terms whereas Π̂ involves sums over 𝐽 terms these additional product level
restrictions can be asymptotically negligible for 𝜃, 𝛿 as we discuss in section 4.1.

4 Properties

TheCLER estimator combines two sources of information based on themodel: consumer choice

decisions on the individual and aggregate level, and product level exogeneity restrictions. These

sources have identifying information for overlapping sets of parameters. Moreover, the empirical

content of these alternative sources will vary based on the shape of the dataset and the true

values of the parameters. In this section, we establish that our estimator is conformant in the

sense that it achieves the optimal convergence rate undermultiple alternative divergence rates of

{𝑁𝑚}, 𝑆, 𝐽 and exploitable variation in the data;11moreover, it is efficient in all of these settings.
The conformance property implies that a researcher can be confident in using our estimator

without knowing or testing the precise conditions she is facing.

For clarity, we first informally argue in section 4.1 that our estimator is efficient without

making reference to its convergence rates.12 Section 4.2 then establishes the convergence rates
11Weuse the term ‘conform’ instead of ‘adapt’ to avoid confusionwith the adaptive estimation literature.
12Aswe shall see, different elementsmay converge at different rates.
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of the estimator under a wide variety of circumstances, completing the efficiency argument.

Section 8 provides a valid inference procedure.

4.1 Efficiency

The CLER estimator is efficient under awide range of circumstances. To see this, it is convenient

to first consider the gradient of the CLER objective function (5),

⎡
⎢
⎢
⎣

𝜕𝛽 ̂m
⊺�̂� ̂m

−𝜕𝜃 log �̂�
−𝜕𝛿 log �̂� + 𝜕𝛿 ̂m

⊺�̂� ̂m

⎤
⎥
⎥
⎦

. (11)

We first show asymptotic equivalence of a GMM estimator using this gradient to the GMM

estimator defined as

argmin
𝛽,𝜃,𝛿

1
2

[ ̂m
⊺ 𝜕𝜓⊺ log �̂�] ⎡⎢

⎣

�̂� 0
0 �̂�𝐿

⎤⎥
⎦

⎡⎢
⎣

̂m

𝜕𝜓 log �̂�
⎤⎥
⎦

, (12)

where 𝜓 = [𝜃⊺, 𝛿⊺]⊺ and �̂�𝐿 = (−𝜕𝜓𝜓⊺ log �̂�)−1 evaluated at the solution ̂𝜓 of (5).13 Note

that in (12) there may bemoremoments than parameters. Specifically, (11) has 𝑑𝛽 + 𝑑𝜃 + 𝑑𝛿

moments, whereas (12) is based on 𝑑𝑏 + 𝑑𝜃 + 𝑑𝛿 moments. Under exact identification of (12), i.e.

if 𝑑𝑏 = 𝑑𝛽, both (11) and (12) are equal to zero if ̂m = 0, 𝜕𝜃 log �̂� = 0, and 𝜕𝛿 log �̂� = 0. In the
case of overidentification, the gradient of the objective function in (12) is

⎡
⎢
⎢
⎣

𝜕𝛽 ̂m
⊺�̂� ̂m

0𝑑𝜃

𝜕𝛿 ̂m
⊺�̂� ̂m

⎤
⎥
⎥
⎦

+
⎡
⎢
⎢
⎣

0𝑑𝛽

𝜕𝜃𝜓⊺ log �̂��̂�𝐿𝜕𝜓 log �̂�
𝜕𝛿𝜓⊺ log �̂��̂�𝐿𝜕𝜓 log �̂�

⎤
⎥
⎥
⎦

, (13)

which yields (11) at the solution since �̂�𝐿 = (−𝜕𝜓𝜓⊺ log �̂�)−1, establishing the equivalence of

these estimators.

Next, we argue that (12) is efficient. First, by the law of iterated expectations, at the truth,

𝔼(𝜕𝜓 log �̂� ̂m
⊺) = 𝔼(𝔼(𝜕𝜓 log �̂� ∣ 𝑥, 𝜉) ̂m

⊺) = 0,

where the second equality follows from the the likelihood principle applied to the choice problem

13We define �̂�𝐿 in terms of (5) in case its gradient (11) is zero at multiple points.
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(without product level moments); see appendix B for details. The intuition for this result follows

from the fact the inner expectation is over the consumer level shocks 𝜀, whereas 𝜀 does not enter
the product level moments. Moreover, −�̂�𝐿 is the scaled inverse information matrix of the

choice problem and we assumed �̂� is the appropriately scaled optimal weight matrix of the

product level moments. Therefore, this choice of weightmatrix is optimal.

Despite their asymptotic equivalence, there are two reasons to prefer the CLER estimator

to the GMM estimators described in (11) and (12). First, the population analog of (11) can

havemultiple solutions even if the population analog of our objective function (5) has a unique

optimum. For example, in the typical casewhere the𝜈𝑖𝑚 are independent standardnormal draws

and 𝜃𝜈 represents scale parameters, 𝜕𝜃𝜈 log �̂� = 0 for any parameter vector where 𝜃𝜈 = 0; setting
𝜃𝜈 = 0, the remaining parameters can be chosen to satisfy the rest of the score, albeit that the
likelihood is then not optimized. The second reason is that computing (12) would be unwieldy

because of the high degree of nonlinearity and the dimension of 𝛿. We show in section 7 that the

CLER estimator can be tractably computed despite the dimensionality of 𝛿.

4.2 Conformant convergence

Wenow show that the CLER estimator is conformant. The objective function in (5) is the sum of

three terms that diverge at different rates. Themicro loglikelihood is the sum over 𝑆 consumers,
themacro loglikelihood in (7) is the sum over𝑁 consumers, and Π̂ is a quadratic that diverges at

rate 𝐽. Moreover, as we illustrate in section 5, the identifying power of themicro data depends
on the value of 𝜃𝑧. As a consequence, the rates of convergence of ̂𝜃𝑧, ̂𝜃𝜈, ̂𝛿 differ across cases
depending on 𝑆/𝐽 and 𝜃𝑧. In contrast, the convergence rate of ̂𝛽 is always

√
𝐽 (assuming there

are at least 𝑑𝛽 strong product level moments) since it is only identified off Π̂.
The remainder of this section enumerates cases defined in terms of (relative) divergence

rates to which the CLER estimator conforms. Since the convergence rate of ̂𝛽 is always
√

𝐽we
focus on the convergence rates of ̂𝜃, ̂𝛿. We first make explicit the following assumptions, which
wemaintain throughout. First, themarket size𝑁𝑚 in any givenmarket𝑚 diverges faster than

the total number of products across all markets, 𝐽, i.e.min𝑚 𝑁𝑚/𝐽 → ∞. This is to ensure

that market shares can be consistently estimated. This assumption is weaker than assuming

𝑁𝑚 = ∞ since𝑁𝑚 need not diverge faster than 𝑆 andwe have not specified howmuch faster

than 𝐽. In addition, we assume that the 𝐽𝑚’s are fixed and that lim𝑀→∞ max𝑚 𝐽𝑚 < ∞. This

ensures that the choice probabilities in each market are constant as the data grows and that
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observedmarket shares vary only due to the addition of consumers (i.e., as𝑁𝑚 grows).14 For

exposition, we will further assume that the instruments 𝑏𝑗𝑚 used in ̂m are strong in the standard

sense (Staiger and Stock, 1997) and there are enoughmoments to ensure identification. If 𝑏𝑗𝑚

were weak then identification of 𝜃, 𝛿 can still come from consumer level data.

To build intuition and connect our convergence results to the previous literature, note that

the one-to-onemapping between shares and 𝛿𝑚 as a function of 𝜃 (Berry, 1994), can be estimated
at rate√𝑁𝑚 because we assume that 𝐽𝑚 is finite. To see this, first note that the (macro) shares

converge at rate√𝑁𝑚. Thus, for given 𝜃, the convergence rate of an estimator ̂𝛿𝑚(𝜃) of 𝛿𝑚(𝜃)
using share data alone, would converge at rate √𝑁𝑚. Micro variation does not improve the

convergence rate of ̂𝛿𝑚(𝜃) for a given 𝜃 because we still only have𝑁𝑚 observations frommarket

𝑚. The convergence rate of the estimator ̂𝛿𝑚 of the parameter 𝛿𝑚 can be slower than √𝑁𝑚

since 𝜃must also be estimated. Indeed, ̂𝛿𝑚 − 𝛿𝑚 = ̂𝛿𝑚( ̂𝜃) − 𝛿𝑚(𝜃) so the convergence rate of
̂𝛿𝑚 is the slower of √𝑁𝑚 and the convergence rate of ̂𝜃. For ease of exposition, we assume in
the remainder of this subsection that 𝑆 diverges no faster than𝑁𝑚. If this assumption is not

satisfied then some of the
√

𝑆 rates will slow to√𝑁𝑚. Section 4.3 will relax this assumption.

We begin with the simpler cases in which the ratio 𝑆/𝐽 is allowed to vary for given values
of the model parameters. It turns out that if 𝜃𝑧 = 0 then the micro data alone is insufficient
to distinguish (𝜃𝜈, 𝛿), which affects convergence rates. In section 4.2.2 we then cover cases in
which 𝜃𝑧 is allowed to drift in the spirit of the weak identification literature. These cases are

critical since ex ante the researcher does not know the value of 𝜃𝑧: if 𝜃𝑧 were close to zero then it

is unclear which fixed case (if either) is appropriate.
contributing

rate term(s)
case 𝜃𝑧 𝜃𝜈, 𝛿 for 𝜃𝑧 for 𝜃𝜈

𝑆/𝐽 → ∞, 𝜃𝑧 ≠ 0
√

𝑆
√

𝑆 log �̂� log �̂�
𝑆/𝐽 → ∞, 𝜃𝑧 = 0

√
𝑆

√
𝐽 log �̂� Π̂

𝑆/𝐽 → c, 𝜃𝑧 ≠ 0
√

𝐽
√

𝐽 both both
𝑆/𝐽 → c, 𝜃𝑧 = 0

√
𝐽

√
𝐽 both Π̂

𝑆/𝐽 → 0
√

𝐽
√

𝐽 Π̂ Π̂

Table 1: Convergence rates of the proposed estimator and terms contributing to the limit distribution
in addition to themacro likelihoodwhen 𝜃𝑧 is fixed and there are sufficientlymanymoments in Π̂
to ensure identification (where needed).

14This is in contrast to BLiP04 which assumes that the number of markets is fixed.
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4.2.1 𝜃𝑧 is fixed. Table 1 lists several cases where the parameters are fixed ordered by impor-

tance of the log �̂�mic term for the asymptotic behavior of (5).

In the first two rows, the size of the micro sample 𝑆 diverges faster than the number of

products 𝐽, which we view as the typical case. Then the log �̂� term of our objective function

diverges faster than Π̂. If 𝜃𝑧 ≠ 0, then the likelihood provides identification and yields an
efficient estimator of ( ̂𝜃, ̂𝛿). So the addition of Π̂ is then asymptotically irrelevant for ( ̂𝜃, ̂𝛿).15 Of
course, using log �̂� alone, we would be unable to recover 𝛽. However, a two step estimator in
which 𝜃, 𝛿 are estimated off log �̂� in the first stage and 𝛽 is estimated byminimizing Π̂(𝛽, ̂𝛿) in
the second stage, is equivalent to our estimator (and hence also efficient). This holds even in the

case of overidentification in Π̂ since the additional moments do not alter the fact that Π̂ diverges

at the slower rate 𝐽.
However, if 𝜃𝑧 = 0 (the second row) then log �̂� fails to identify all the parameters. In this case,

utilities and choice probabilities do not vary with demographics 𝑧 (as we illustrate in section 5).
Thus, the 𝜃𝜈 and 𝛿 scores of themicro likelihood are collinear. Indeed, if 𝜃𝑧 = 0 then s𝑗𝑚(𝑧, 𝜈) is
flat in 𝑧 and the scores with respect to 𝜃𝜈 and 𝛿 depend on themicro data through∑𝑁𝑚

𝑖=1 𝐷𝑖𝑚𝑦𝑖𝑗𝑚

only.16 As a result, 𝜃𝜈 and 𝛿 are not identified off log �̂�. In this case, Π̂ provides identification as

we have assumed themoments are sufficient to identify 𝜃𝜈. Consequently, the convergence rate

of ̂𝜃𝜈 and ̂𝛿 slows to
√

𝐽. In contrast, 𝜃𝑧 is still identified by themicro likelihood because the score

with respect to 𝜃𝑧 depends on∑𝑁𝑚
𝑖=1 𝐷𝑖𝑚𝑦𝑖𝑗𝑚𝑧𝑖𝑚 when s𝑗𝑚 is flat in 𝑧, so the rate of ̂𝜃𝑧 continues

to be
√

𝑆.
We nowmove to the cases where 𝑆/𝐽 converges to a nonzero constant. Here, themicro term

log �̂�mic of the loglikelihood and Π̂ diverge at the same rate, and all parameter estimates converge

at the same rate
√

𝐽 ∼
√

𝑆. However, our estimator is still more efficient than alternatives since
it combines both terms optimally. There remains a distinctionwhen 𝜃𝑧 = 0 since again log �̂� has

no identifying demographic variation to pin down 𝜃𝜈 and so only Π̂ contributes to the limiting

distribution for this parameter.

Finally, we consider the case where 𝑆/𝐽 → 0. Now Π̂ diverges faster than themicro loglike-

lihood log �̂�mic. Consequently, if 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃 then Π̂will deliver the asymptotics. However, if

𝑑𝛽 + 𝑑𝜃𝜈 ≤ 𝑑𝑏 < 𝑑𝛽 + 𝑑𝜃𝜈 + 𝑑𝜃𝑧 and 𝑆 diverges then themicro likelihoodwill contribute to the
15We implicitly assume sufficient variation in 𝑧 to identify all random coefficients; there can be intermediate

cases. See the discussion at the end of section 5.
16The scores of log �̂�mic with respect to 𝜃𝑧 and 𝜃𝜈 are in (20) and (22). The score with respect to 𝛿𝑗𝑚 is

∑𝑁𝑚
𝑖=1 ∑𝐽𝑚

ℓ=0(𝐷𝑖𝑚𝑦𝑖ℓ𝑚 / 𝜋𝑧𝑖𝑚
ℓ𝑚 ) ∫ sℓ𝑚(𝑧𝑖𝑚, 𝜈)(1(ℓ = 𝑗) − s𝑗𝑚(𝑧𝑖𝑚, 𝜈)) d𝐹(𝜈).
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limit distribution and the convergence rate will be
√

𝑆 instead of the
√

𝐽 rate displayed in the
table. An extreme example of this case arises when 𝑆 = 0, so log �̂�mic = 0. This is the environ-
ment of BLP95 and both estimators are equally efficient under the assumptions of this section,

albeit that ours would bemore efficient ifmin𝑚 𝑁𝑚/𝐽↛∞ because ours does not impose the

share constraint; see section 6.2.
contributing

rate term(s)
case 𝜃𝑧 𝜃𝜈, 𝛿 for 𝜃𝑧 for 𝜃𝜈

√𝑆𝜆2/𝐽 → ∞, 𝑆/𝐽 → ∞
√

𝑆
√

𝑆𝜆2 log �̂� log �̂�
√𝑆𝜆2/𝐽 → c, 𝑆/𝐽 → ∞

√
𝑆

√
𝐽 log �̂� both

√𝑆𝜆2/𝐽 → 0, 𝑆/𝐽 → ∞
√

𝑆
√

𝐽 log �̂� Π̂
√𝑆𝜆2/𝐽 → c, 𝑆/𝐽 → c

√
𝐽

√
𝐽 both both

√𝑆𝜆2/𝐽 → 0, 𝑆/𝐽 → c
√

𝐽
√

𝐽 both Π̂
√𝑆𝜆2/𝐽 → 0, 𝑆/𝐽 → 0

√
𝐽

√
𝐽 Π̂ Π̂

Table 2: Convergence rates of the proposed estimator and terms contributing to the limit distribution
in addition to themacro likelihood when 𝜃𝑧 can drift and there are sufficiently manymoments in Π̂
to ensure identification (where needed).

4.2.2 𝜃𝑧 can drift. In section 4.2.1 there is a discontinuity in the asymptotic behavior of the

CLER estimator between the 𝜃𝑧 = 0 and 𝜃𝑧 ≠ 0 cases. In order to address this discontinuity, we
now extend our discussion by allowing 𝜃𝑧 to drift, i.e. to depend on𝑆, 𝐽.17 Wedenote the drifting
rate by 𝜆, so 𝜆 = ‖𝜃𝑧‖. Table 2 summarizes these cases, which are again ordered in decreasing
importance of themicro likelihood for asymptotic behavior of (5).

In the first row in table 2,√𝑆𝜆2/𝐽 → ∞which is equivalent to the first row of table 1 in

terms of asymptotic behavior. In the next two cases, log �̂�mic diverges faster than Π̂, but the two
cases differ in the strength of identification they provide due to 𝜆 → 0 at different rates. The
knife edge case where the rate of 𝜆 is such that √𝑆𝜆2/𝐽 goes to a constant has no analog in
table 1. Here both log �̂�mic and Π̂ contribute to the limit distribution of ̂𝜃𝜈 because the faster

divergence of log �̂�mic is just offset by the convergence of 𝜆. The case where√𝑆𝜆2/𝐽 → 0 is
effectively equivalent to the second case of table 1 where 𝜃𝑧 = 0. The final three cases all have
direct analogs in the final three rows of table 1.
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leading case (𝑆/𝐽 → ∞, 𝜃𝑧 ≠ 0)
Estimationmethod ̂𝛿 ̂𝜃𝑧 ̂𝜃𝜈 ̂𝛽
CLER:− log �̂� + Π̂ min(

√
𝑆, √𝑁𝑚)

√
𝑆

√
𝑆

√
𝐽

MDLE:− log �̂�, then Π̂ min(
√

𝑆, √𝑁𝑚)
√

𝑆
√

𝑆
√

𝐽
Rely on Π̂ to identify 𝜃𝜈 √

𝐽
√

𝑆
√

𝐽
√

𝐽

more general case: (𝑆/𝐽 → ∞, 𝜃𝑧 ∼ 𝜆)
Estimationmethod ̂𝛿 ̂𝜃𝑧 ̂𝜃𝜈 ̂𝛽
CLER:− log �̂� + Π̂ min{max(

√
𝐽,

√
𝑆𝜆2), √𝑁𝑚}

√
𝑆 max(

√
𝐽,

√
𝑆𝜆2)

√
𝐽

MDLE:− log �̂�, then Π̂ min{
√

𝑆𝜆, √𝑁𝑚}
√

𝑆
√

𝑆𝜆2 min(
√

𝑆𝜆2,
√

𝐽)
Rely on Π̂ to identify 𝜃𝜈 √

𝐽
√

𝑆
√

𝐽
√

𝐽

Table 3: Rates of convergence with product level moments if 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃𝜈

4.3 Summary

What the above discussion has illustrated is that it is optimal to rely on the variation in the

micro data alone to identify 𝜃𝑧, 𝜃𝜈, 𝛿 if the micro sample is large and demographic variation
affects choice probabilities substantially. Otherwise, Π̂ becomes useful. Both our estimation and

inference procedures automatically conform so that one does not have to test which situation

one is in.

Table 3 summarizes these ideas. We compare the CLER estimator to two alternatives under

the maintained assumptions that 𝑆/𝐽 → ∞ and that the overidentifying moments in Π̂ are

sufficient to identify 𝜃𝜈 (which requires 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃𝜈).

First consider the leading case where 𝜃𝑧 ≠ 0 is fixed. We have already described the behavior
of our estimator in table 1. The first alternative in table 3 is the MDLE two-step estimator

described in section 4.2.1, which in this case is asymptotically equivalent to ourmethod. The

second alternative, relying on ̂m rather than themicro sample to provide identification for 𝜃𝜈

would occur if one dropped the 𝜃𝜈 gradients from (12), which had 𝑑𝑏 + 𝑑𝜃𝑧 + 𝑑𝜃𝜈 + 𝑑𝛿 moments

for 𝑑𝛽 + 𝑑𝜃𝑧 + 𝑑𝜃𝜈 + 𝑑𝛿 parameters. Doing so slows down the convergence rate to
√

𝐽 for ̂𝜃, ̂𝛿.
We now generalize to the case inwhich 𝜃𝑧 is drifting toward zero at rate𝜆, a case thatwas first

discussed in section 4.2.2. For the CLER estimator, the rate 𝜆 determines which of the first three
rows in table 2 applies. TheMDLE two-step, on the other hand, could do poorly if 𝜆 converges to
zero fast. In the extreme, i.e. if 𝜃𝑧 = 0, this estimator is inconsistent. An estimator relying on ̂m

to estimate 𝜃𝜈 is not affected by the fact that the likelihood provides less information than in the
17We can also let𝜎𝜉, the standard deviation of 𝜉𝑗𝑚 drift, which alters the explanatory power of Π̂ instead of that

of log �̂�. We believe that the 𝜃𝑧 close to zero case is of greater concern in applied work than𝜎𝜉 close to zero.
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leading case, because it was not using that information anyway. The CLER estimator uses both

sources of information and hence converges at the faster rate of the two alternative estimators,

which can nevertheless be slower than in the leading case.

5 Identifying unobserved heterogeneity frommicro data

Above, we highlighted that themicro likelihood can efficiently use the information in themicro

sample to estimate consumer heterogeneity parameters 𝜃. We now turn to a specific example to

illustrate the underlying variation in themicro sample that provides identification.

Consider a simple case of a singlemarket with two products and an outside good. There is a

single demographic variable, so 𝑧𝑖 is a scalar.18 Utility for product 𝑗 is

𝑢𝑖𝑗 = 𝛿𝑗 + 𝜃𝑧𝑥(1)
𝑗 𝑧𝑖 + 𝜃𝜈𝑥(2)

𝑗 𝜈𝑖 + 𝜀𝑖𝑗,

where the product characteristics are 𝑥(1) = [1 0]⊺, 𝑥(2) = [1 1]⊺.The demographic variable
shifts utility of good 1 only, and the single random coefficient induces correlation in the utilities

of the two inside goods. As is typical, in this example 𝜈𝑖 has a standard normal distribution.

Suppose we observe a random sample of microdata {𝑦𝑖⋅, 𝑧𝑖}. Themicro data nonparametri-
cally identifies the function ̃𝜋𝑧 = Pr(𝑦𝑖⋅ = 1 | 𝑧, 𝑥). Figure 1 plots this function over 𝑧 ∈ [−1, 1]
for three different parametrization of the model, namely 𝜃𝜈 = {0, 1, 2}with 𝛿 = (−.25, 25)⊺

and 𝜃𝑧 = 2. Intuitively, the share of good 1 rises with 𝑧 in all three panels. However, the slope
differs based on the value of 𝜃𝜈. The other notable difference is that as 𝜃𝜈 increases, 𝑧 has a larger
impact on the share of good 2, ̃𝜋𝑧

2, relative to the outside good, ̃𝜋𝑧
0. Since the utilities of goods 1

and 2 are increasingly correlated as 𝜃𝜈 grows, it becomesmore likely that consumers are on the

margin between the two inside goods than between good 1 and the outside good. Therefore, a

slight increase in 𝑧 induces relativelymore substitution away from good 2 than the outside good.

We can also nonparametrically identify the derivatives of ̃𝜋𝑧. Given our special case we have,

d𝑧 ̃𝜋𝑧
𝑗 = 𝜃𝑧𝜕𝑢1

𝜋𝑧
𝑗 ,where we employ the fact that 𝑧 only affects the utility of good 1. Taking a ratio

of these gives us diversionwith respect to utility from good 1 to good 2 and from good 1 to the

outside good for every value of 𝑧, i.e., for 𝑗 = {0, 2},

d𝑧 ̃𝜋𝑧
𝑗

d𝑧 ̃𝜋𝑧
1

=
𝜕𝑢1

𝜋𝑧
𝑗

𝜕𝑢1
𝜋𝑧

1
= 𝐷𝑧

1𝑗. (14)

18Since there is a singlemarket in this section, we drop𝑚 from the notation.
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Figure 1: Conditional shares ̃𝜋𝑧 are identified by themicro sample.

Equation (14) provides intuitive variation with which to identify 𝜃𝜈. To see this, recall that when

𝜃𝜈 = 0 then we have multinomial logit demand. This implies that diversion is a function of
conditional choice probabilities: if 𝜃𝜈 = 0 then 𝐷𝑧𝑖

1𝑗 = 𝜋𝑧
𝑗 /(1 − 𝜋𝑧

1). Moreover, due to the
independence of irrelevant alternatives property, diversion will be constant over 𝑧.

Figure 2 illustrates the implications of diversion for different 𝜃𝜈. The first panel depicts

diversionwith respect to utility from good 1 to good 2 as a function of 𝑧, i.e.𝐷𝑧
12. As predicted,

diversion is constant in 𝑧 for 𝜃𝜈 = 0, yet it is decreasing for 𝜃𝜈 > 0. The reason for the decline can
be seen in figure 1: as 𝑧 increases, the conditional share of good 2 fallsmore rapidly for 𝜃𝜈 > 0, so
a larger proportion of switchers must come from the outside good in response to an increase in 𝑧.

The second panel of figure 2 plots the logit-implied diversion ratios computed from condi-

tional shares generated by the three parameterizations of 𝜃𝜈. If 𝜃𝜈 = 0, we exactly reproduce
the constant diversion rate from the first panel. For 𝜃𝜈 > 0, we see decreasing functions that
are below the line for 𝜃𝜈 = 0. The reason these functions are decreasing is the same as for the
first panel. The reason the level of the logit-predicted diversion decreases in 𝜃𝜈 is that diversion

between goods 1 and 2 ismore than proportional to shares when 𝜃𝜈 > 0. An illustration of di-
version between good 1 and the outside goodwould produce amirror image since increasing 𝜃𝜈

weakens diversion between these goods.

The third panel of figure 2 takes the difference of the first two panels. As 𝜃𝜈 rises, the logit

model under-predicts diversion between the two inside goods. Moreover, the degree of under-

prediction varies in 𝑧. This suggests moments with which to identify 𝜃𝜈 by comparing the esti-

mated diversion rate to themodel-predicted diversion rate. In this exercise we have fixed the

values of the other parameters 𝜃𝑧 and 𝛿. In practice, the describedmoments for 𝜃𝜈 would need to

be paired with commonly usedmoments to identify 𝜃𝑧, 𝛿; e.g., matchingmarket shares for 𝛿 and
matching correlations between demographics and product characteristics for 𝜃𝑧. An advantage
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Figure 2: Diversion andDemographics

of the likelihood approach to usingmoments is that it fully exploits all of the information in the

micro sample.

So farwe have focused on a special case inwhich it is clear that themicro sample has somuch

valuable information to identify 𝜃𝜈 that the Π̂ term of our estimator would be redundant. To see

a case where Π̂ is necessary for identification, simply set 𝜃𝑧 = 0 in our example. Now 𝜕𝑧 ̃𝜋𝑧
𝑗 = 0

and themoments we have suggested are undefined and no longer informative.

In our example, we specified 𝑧 to shift the utility of exactly one good and restricted 𝜃𝜈 to

have dimension one. There aremore general conditions for identification of 𝜃𝜈 from consumer

demogrpahics. 𝜇𝑧 is typically specified as a linear combination of interactions between product

characteristics and consumer demographics, e.g.,

𝜇𝑧(𝑥𝑗, 𝑧𝑖; 𝜃𝑧) = 𝑥⊺
𝑗 Θ𝑧𝑧𝑖 = ∑

𝑘
∑

𝑑
𝜃𝑧(𝑘,𝑑)𝑥𝑘

𝑗 𝑧𝑑
𝑖 ,

whereΘ𝑧 is amatrix with elements 𝜃𝑧(𝑘,𝑑). With this formwe have,

d𝑧𝑑 ̃𝜋𝑧
𝑗 =

𝐾
∑
𝑘=1

𝐽
∑
ℓ=1

𝜃𝑧(𝑘,𝑑)𝑥𝑘
ℓ 𝜕𝑢ℓ

𝜋𝑧
𝑗 . (15)

Inmatrix notation, (15) can be written as

d𝑧⊺ ̃𝜋𝑧 = 𝜕𝑢⊺𝜋𝑧𝜕𝑧⊺𝑢 = 𝜕𝑢⊺𝜋𝑧𝜕𝑧⊺𝜇𝑧 = 𝜕𝑢⊺𝜋𝑧𝑋⊺Θ𝑧. (16)

Thus, only if 𝑋⊺Θ𝑧 hasmaximum column rank, does there exist a unique 𝜕𝑢⊺𝜋𝑧 that solves (16).

In other words, if this rank condition holds, thenwe can recover the substitutionmatrix for all

𝑧 from 𝜃𝑧 and the data. Flexibility of the substitutionmatrix is the primarymotivation for the

introduction of random coefficients. Since the introduction of 𝜃𝜈 imposes parametric structure,
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nonparametric identification of the full substitutionmatrix is sufficient to identify 𝜃𝜈.

Themost general specification of 𝜇𝜈 would let 𝑥 be product dummies. Then, if 𝜈were dis-
tributed mean zero normal such that 𝜃𝜈 would be 𝐽(𝐽 + 1)/2-dimensional (𝐽 variances and
𝐽(𝐽 −1)/2 correlations), onewould have the samenumber of unknowns as there are restrictions
in (16). Applied work typically imposes restrictions to reduce the dimension of 𝜃𝜈 by introduc-

ing random coefficients on product characteristics instead of on products and restricting 𝜈𝑖 to be

independent across its elements. If the rank condition on𝑋⊺Θ𝑧 fails, we still have restrictions

like (16) that may pin down some or all elements of 𝜃𝜈 depending on the specification of 𝜇𝜈.

6 ComparisonwithAlternative Estimators

To clarify the contribution of the CLER estimator, we now relate it to other estimators used in

the discrete choice literature.

First, as noted above, with 𝑆 = 𝑁, log �̂� simplifies to themixed logit loglikelihood. If 𝑆 <
𝑁, the only difference is that log �̂� exploits the market share data via the macro term. This is

particularly usefulwhen𝐽 is large relative to𝑆, since then therewould otherwise be an incidental
parameters problem in estimating 𝛿. More generally,market share data candramatically improve
the precision of the estimator, as illustrated in fig. 3 of Grieco et al. (2022).

The othermajor class of estimators used in applied work consists of share constrained GMM

estimators (e.g., BLP04; Petrin 2002; Grieco et al. 2023).19 The remainder of this section shows

how the CLER estimator can be converted intomembers of this class of estimators. Since the

CLER estimator is efficient, so wewill point out losses of efficiency along the way. Theremay

be a trade-off between efficiency and computational tractability that justifies using an ineffi-

cient estimator. We also discuss these trade-offs. One should keep inmind that computational

resources tends to be less costly than data. We argue for the computational tractability of the

CLER estimator in section 7.

Figure 3 provides a summary of the steps. The highest node in the tree represents the CLER

estimator. Each node below represents an alteration to arrive at an alternative estimator. The

large pink box representing section 6.3 proposes three alternative alterations for linearizing the

score with respect to 𝜃𝜈 as described in section 6.3.2. One can stop the process at any node in the
19An alternative class of share constrainedmicro likelihood estimators (e.g., Goolsbee and Petrin, 2004; Chin-

tagunta and Dube, 2005; Train andWinston, 2007; Goeree, 2008; Bachmann et al., 2019) also derives from our
estimator by only imposing share constraints on our estimator without recasting it as a GMMproblem as described
by the dotted line in Figure 3.
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tree, so in total the figure describes nine alternative estimators (including share constrained like-

lihood, see footnote 19). At each node, we briefly list the primary costs (red) and benefits (green)

of the step relating to econometric efficiency (Fighter-Jet), inference (Band-aid), computational tractability

(Laptop-Code), data requirements (Dollar-SignDollar-Sign) and experience in applied work (??). Each step downward in

the tree leads to an estimator that is weakly less efficient than its parent. To our knowledge, all

estimators that have been applied in empirical work on discrete choice demand are covered here.

6.1 Step 1: AGMMversion of our estimator

In section 4.1, we presented a GMM estimator (12) which is asymptotically equivalent to our

estimator, assuming that (12) does not lose identification; as we pointed out in section 4.1. Going

fromminimizing the objective function (5) to setting its derivatives to zero can lose identification

due to the existence of multiple (local) optima.

For equivalence to obtain, it is essential that the �̂�𝐿 and �̂�matrices used in (12) have the

norming indicated in section 4.1: unlike in standard GMM the convergence rate of the GMM

estimator can be affected by a poor choice of weightmatrix. The reason for this is that one set of

moments entails a sum over consumers whereas the other is a sum over products.

GMMestimators are often used to avoid parametric distributional assumptions, however this

rationale does not apply in this case. Indeed, GMMestimators discussed in this paper also use the

distributional assumptions on 𝜈, 𝜀 for themoments, and Π̂ in (5) similarly avoids distributional

assumptions on 𝜉.
Our estimator has an important computational advantage over (12): its objective function is

approximately convex in 𝛿. Since 𝛿 is high-dimensional this convexity is important. In fact, the
next step is driven by addressing the computational complexity introduced here.

6.2 Step 2: Imposing share constraints

To resolve the dimensionality issue in (12) one can impose share constraints 𝜋 = 𝑠.20 Following
the intuition of Berry (1994) this is equivalent to treating 𝛿 as a deterministic function of 𝜃 and
yields a consistent estimator as𝑁𝑚, 𝑆, 𝐽 → ∞.

Three issues arise when imposing the share constraint. First, because it is a one to one

mapping on the interior of the probability simplex, doing so rules out the presence of zero

shares. While this is reasonable for conditional choice probabilities, applied cases have arisen

where zero shares are observed in data. By optimizing the CLER objective rather than enforcing
20Share constraints can also be imposed on log �̂� directly, see footnote 19.
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CLER estimator
Fighter-Jet fully conformant and efficient
Band-aid correct inferencewith large consumer samples
Band-aid correct inference with weak micro identifica-

tion
Laptop-Code well-behaved objective function
Laptop-Code reasonably fast available software

Section 6.2: impose share constraints
Fighter-Jet could lose efficiency
Band-aid can invalidate inference
Laptop-Code easier to compute thanGMMwith likelihood score asmoments
Laptop-Code harder to compute thanmdple

Section 6.1: MDLE score asmoments
ID-CARD could lose identification
Fighter-Jet fully efficient if identified
Laptop-Code intractablewithout imposing share constraints

Section 6.3: linearize score

Section 6.3.1: linearizing 𝜃𝑧 moments

Laptop-Code no simulation bias

Fighter-Jet loss of efficiency

section 6.3.2: addressing 𝜃𝜈 moments

drop 𝜃𝜈 moments

Laptop-Code no simulation bias
ID-CARD needs overidentifiedm

Fighter-Jet slower rate of convergence

second choicemoments
Laptop-Code no simulation bias
Dollar-SignDollar-Sign requires additional data
Fighter-Jet data better usedwithmdple

fancy newmoments

Laptop-Code no simulation bias
Fighter-Jet loss of efficiency
?? has not been used before

Section 6.4: population statistics instead of micromoments

Dollar-SignDollar-Sign only requires crosstabs

Fighter-Jet loss of efficiency compared to section 6.3.1

can also impose share
constraints directly

Figure 3: Schematic comparison of our estimator to alternatives. See text for details.

that unconditional choice probabilities equalmarket shares, the CLER estimator offers some

robustness to zero or small shares in the data.

Second, andmore importantly, imposing the share constraints introduce a potential loss of

efficiency. Suppose that 𝜃𝑧 ≠ 0 such that theMDLE and the CLER estimator are asymptotically
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equivalent. Then this efficiency loss occurs unless the population in the smallestmarket diverges

faster than the total number of consumers in themicro sample across allmarkets 𝑆 and the total
number of products 𝐽. Lemma 1 establishes this result for the singlemarket case.

Third, and most importantly, using the assumption 𝑠 = 𝜋 in inference, also, can produce
incorrect inference unless the total number of consumers in all markets is negligible compared

to the square root of the population in the smallest market.

We start by demonstrating the potential efficiency loss.

Lemma 1. Suppose that there is a single market with a finite number of products 𝐽 and that
themicro sample consists of random draws from the population of size𝑁, eachmember of the
population being drawn with probability 0 < 𝜒𝑁 → 𝜒 as 𝑁 → ∞ with 0 ≤ 𝜒 ≤ 1. Then
imposing the share restriction cannot bemore efficient and is generally less efficient than using

theMDLE (or CLER) estimator of 𝛿, 𝜃.

Theproof of this lemma follows immediately fromtheproofs of lemmas2and3 inappendixC,

which formally derive the asymptotic variance of theMDLE (or CLER) estimator and the share

constrained likelihood estimator respectively.

There are two cases in which there is no loss of efficiency. The first is if 𝜒 = 0, which should
in practical terms be interpreted as the size of themicro sample being negligible compared to the

size of thepopulation. The second case is if the coefficients on theobservablemicro regressors, 𝜃𝑧,

are all equal to zero. This case is not helpful since then there is no identification, so a comparison

of efficiency ismoot. Inpractice, imposing the share constraint can lead to a substantial efficiency

loss as examples 1 and 2 in Grieco et al. (2022) illustrate.

For additional intution, consider the share constrained estimator as a GMMestimator with

infinite weight on a subset of moments. Specifically, suppose that one separates out themicro

andmacro terms of log �̂� as specified in (7) and considers the derivative of themacro termwith

respect to 𝛿, i.e. for all𝑚 = 1, … , 𝑀 and all 𝑗 = 1, … , 𝐽𝑚,

𝐽𝑚

∑
ℓ=0

𝑠ℓ𝑚
𝜋ℓ𝑚

∫ sℓ𝑚(𝑧, 𝜈)(1(ℓ = 𝑗) − s𝑗𝑚(𝑧, 𝜈)) d𝐹(𝜈) d𝐺(𝑧) = 0, (17)

where swas defined in (2). If 𝑠 = 𝜋, then the left hand side in (17) becomes

∫ s𝑗𝑚(𝑧, 𝜈) d𝐹(𝜈) d𝐺(𝑧) − ∫ s𝑗𝑚(𝑧, 𝜈)
𝐽𝑚

∑
ℓ=0

sℓ𝑚(𝑧, 𝜈)
⏟⏟⏟⏟⏟

=1

d𝐹(𝜈) d𝐺(𝑧). (18)
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So setting 𝑠 = 𝜋 solves (17). By Berry (1994), this solution is unique. Therefore, imposing share
constraints effectively places infinite weight on this moment. It is well known from standard

GMM theory that placing infinite weight on a subset of moments is generally inefficient. As

noted, in our setting, there would be an efficiency loss unless 𝑆 and 𝐽 were negligibly small
compared to𝑁𝑚 because then themacro score runs overmore terms than the othermoments.

In addition to the efficiency cost, imposing the share constraints also complicates inference.

If one treats 𝛿 as a deterministic function of 𝜃, one ignores the uncertainty arising from observed

market shares. This will result in a downward bias in the standard errors for ̂𝛿. Indeed, for some
linear combinations of 𝛿, asymptotics are governed by the estimation error in market shares
unless 𝑆 is negligibly small compared tomin𝑚 √𝑁𝑚.

To illustrate, consider inference on a linear combination of 𝛿⋅𝑚. Imposing share constraints,

it would be tempting to use the deltamethod to conclude that for any vector 𝑣 ≠ 0,
√

𝑆𝑣⊺( ̂𝛿⋅𝑚 − 𝛿⋅𝑚)

√𝑣⊺𝜕𝜃⊺ ̂𝛿⋅𝑚( ̂𝜃) ̂V𝜃𝜕𝜃
̂𝛿⊺
⋅𝑚( ̂𝜃)𝑣

𝑑
→ 𝑁(0, 1), (19)

where ̂𝛿⋅𝑚(𝜃) is the share inversion for market𝑚 and V𝜃 is the asymptotic variance of ̂𝜃. This
ignores sampling error in the aggregate data, which becomes a problem for all vectors 𝑣 for
which 𝑣⊺𝜕𝜃⊺𝛿⋅𝑚 = 0,21 where the left hand side of (19) diverges. The space of such vectors 𝑣 is
of dimension no less than 𝐽𝑚 − 𝑑𝜃 > 0 since 𝛿⋅𝑚 ∶ ℝ𝑑𝜃 → ℝ𝐽𝑚 . Using the bootstrap the way

it is typically used does not solve this problem.22 We provide the correct asymptotic variance

formulas for the singlemarket case in appendix C.2. Grieco et al. (2022) provides a numerical

example that shows that imposing the share constraint without adjusting the standard errors

can lead to standard errors being off by an arbitrarily large factor.

To summarize, inference using the CLER estimator can be done using standard extremum

estimation techniques. By contrast, the asymptotic variance for the share constrained estimator

should be based on the asymptotic variance formulas in appendix C.2 which are based on the

moments in (34), not on themore convenient formulas that obtain if 𝑁 is set to∞. This issue
21Indeed, then by a Taylor expansion,

𝑣⊺{ ̂𝛿⋅𝑚( ̂𝜃) − 𝛿⋅𝑚(𝜃)} ≃ 𝑣⊺{ ̂𝛿⋅𝑚( ̂𝜃) − 𝛿⋅𝑚( ̂𝜃)}⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑂𝑝(1/√𝑁𝑚)

+ 𝑣⊺𝜕𝜃⊺𝛿⋅𝑚(𝜃)⏟⏟⏟⏟⏟
=0

( ̂𝜃 − 𝜃) + 1
2

∑
𝑗

𝑣𝑗 ( ̂𝜃 − 𝜃)⊺𝜕𝜃𝜃⊺𝛿𝑗𝑚(𝜃)( ̂𝜃 − 𝜃)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝑂𝑝(1/𝑆)

,

such that asymptotics are governed by the first right hand side term unless𝑆/√𝑁𝑚 vanishes.
22Onewould have to draw the bootstrap population from the superpopulation, which is impossible.
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extends to any estimator in which the share constraints are imposed to hold.

6.3 Step 3: Adjustments to Likelihood-basedMoments

Onemotivation for using a GMMestimator is to apply themethod of simulatedmoments (MSM)

rather than simulatedmaximum likelihood. With theMSM, the simulatedmoments havemean

zero at the truth, regardless of the number of simulation draws. Consequently, as Pakes and

Pollard (1989, PP89) have shown, theMSM estimator has amean zero normal limit distribution

whose convergence rate is the square root of the slower of the total number of draws and the

number of observations. For example, if the number of draws per observationwere fixed then the

total number of draws grows proportionally to the number of observations and the convergence

rate is the square root of the number of observations, albeit that the asymptotic variance would

thenbegreater. However, thederivativesof the simulated log �̂�donothavemeanzeroat the truth

since they are nonlinear in the simulated integrals. Step 3 replaces the score of the likelihood

with approximations that are able to take advantage of the linearity property. This results in a

loss of efficiency in return for less computational cost for a given level of numerical (as opposed

to statistical) accuracy.

We can focus on themicro score because themacro score in (7) is equal to zero if observed

shares are equal to choice probabilities, which we imposed in section 6.2. We can ignore the

double counting discrepancy in themicro score between (7) and (8) because themicro score has

mean zero in both cases. So wewill work with themicro score in (8).

6.3.1 Approximation of 𝜃𝑧 moments for linear simulation error. We first consider the

micro score of (8) with respect to 𝜃𝑧(𝑘,𝑑), i.e.

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝐷𝑖𝑚𝑦𝑖𝑗𝑚

𝜋𝑧𝑖𝑚
𝑗𝑚

∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘
𝑗𝑚𝑧𝑑

𝑖𝑚 −
𝐽𝑚

∑
ℓ=1

𝑥𝑘
ℓ𝑚𝑧𝑑

𝑖𝑚sℓ𝑚(𝑧𝑖𝑚, 𝜈)) d𝐹(𝜈), (20)

which is a ratio of two integrals due to the presence of 𝜋𝑧𝑖
𝑗𝑚 in the denominator. A commonly

used approximation to the score can be found by setting 𝜈 = 0 selectively as follows. Continuing
from (20), we have

=
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝐷𝑖𝑚𝑦𝑖𝑗𝑚

∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘
𝑗𝑚𝑧𝑑

𝑖𝑚 − ∑𝐽𝑚
ℓ=1 𝑥𝑘

ℓ𝑚𝑧𝑑
𝑖𝑚sℓ𝑚(𝑧𝑖𝑚, 𝜈)) d𝐹(𝜈)

∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈) d𝐹(𝜈)

≈
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝐷𝑖𝑚𝑦𝑖𝑗𝑚

∫ s𝑗𝑚(𝑧𝑖𝑚, 0)(𝑥𝑘
𝑗𝑚𝑧𝑑

𝑖𝑚 − ∑𝐽𝑚
ℓ=1 𝑥𝑘

ℓ𝑚𝑧𝑑
𝑖𝑚sℓ𝑚(𝑧𝑖𝑚, 𝜈)) d𝐹(𝜈)

∫ s𝑗𝑚(𝑧𝑖𝑚, 0) d𝐹(𝜈)
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=
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝐷𝑖𝑚(𝑦𝑖𝑗𝑚 − 𝜋𝑧𝑖𝑚
𝑗𝑚 )𝑥𝑘

𝑗𝑚𝑧𝑑
𝑖𝑚, (21)

The final line of (21) matches the correlation of demographics and product characteristics in

the micro sample to that of the model. This moment is commonly used in applied work, see

CG23 for a list of examples.23 A convenient feature of this moment is that it is linear in 𝜋𝑧𝑖𝑚
𝑗𝑚 ,

its only approximated object, so it can be approximated without simulation bias if one uses

Monte Carlo integration. However, since the share inversion is a nonlinear transformation of a

simulated object, the number of simulation draws required in the computation of 𝛿(𝜃), which is
an argument to s𝑗𝑚, must diverge faster than 𝑆 to avoid affecting efficiency and necessitating
a different inference procedure,24 and at at least the same rate as 𝑆 in order not to affect the

convergence rate.

6.3.2 Handling 𝜃𝜈 moments. Themicro score of (8) with respect to 𝜃𝜈(𝑘) is similar to (20),

replacing 𝑧𝑑
𝑖𝑚 with 𝜈𝑘 in the integrand, i.e.

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝐷𝑖𝑚
𝑦𝑖𝑗𝑚

𝜋𝑧𝑖𝑚
𝑗𝑚

∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘
𝑗𝑚𝜈𝑘 −

𝐽𝑚

∑
ℓ=1

𝑥𝑘
ℓ𝑚𝜈𝑘sℓ𝑚(𝑧𝑖𝑚, 𝜈)) d𝐹(𝜈), (22)

However, the above used approximation is not useful since the integral would simplify to zero.

There are at least threeways of dealingwith this issue. Themost common in the appliedwork

is to simply drop the scorewith respect to 𝜃𝜈 and rely on product levelmoments for identification.

As discussed above, doing somay slow the rate of convergence of ̂𝜃𝜈 from
√

𝑆 to
√

𝐽.
A second alternative employed by e.g. Berry et al. (2004a) and Grieco et al. (2023) is intro-

ducing second choice data based on surveys of consumer purchases to construct alternative

moments. The CLER estimator could accommodate second choice data efficiently by includ-

ing it directly in the likelihood. There are, however, two potential issues with second choice

data. First, surveys rely on consumer responses rather than revealed preference and can be sensi-

tive to selection issues due to low response rates. Perhapsmore importantly, such data is often

prohibitively costly to obtain.
23Discretizing either 𝑧𝑖𝑚 or𝑥𝑗𝑚 will lead to two other popular classes of moments discussed by CG23 namely

𝔼[𝑧𝑖𝑚|𝑗 ∈ 𝕁(𝑥𝑗𝑚)] or𝔼[𝑥𝑗𝑚|𝑖 ∈ 𝕀(𝑧𝑖𝑚)] for some sets of products or consumers defined by their characteristics or
demographics. The discretizationmay impose a further loss of information. Note that appliedwork often conditions
thesemoments onmaking an inside purchase; alternatively, one could define𝑥0𝑚 = 0 and use an unconditional
moment.

24Otherwise, there would be an extra term in themoment due to the error in simulating 𝛿(𝜃), i.e. there would be
one termwith 𝛿(𝜃) and one expansion term involving the difference between simulated and actual values of 𝛿(𝜃).
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While we are unaware of its use in the literature, there is a third possibility that utilizes two

independent 𝜈 draws per simulation 𝑟, as we now explain. First, note that25 ∑𝐽𝑚
𝑗=0 s𝑗𝑚(𝑥𝑘

𝑗𝑚𝜈𝑘 −
∑𝐽𝑚

ℓ=0 sℓ𝑚𝑥𝑘
ℓ𝑚𝜈𝑘) = 0, such that (22) can be expressed as

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝐷𝑖𝑚
𝑦𝑖𝑗𝑚 − 𝜋𝑧𝑖𝑚

𝑗𝑚

𝜋𝑧𝑖𝑚
𝑗𝑚

∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘
𝑗𝑚𝜈𝑘 −

𝐽𝑚

∑
ℓ=0

𝑥𝑘
ℓ𝑚𝜈𝑘sℓ𝑚(𝑧𝑖𝑚, 𝜈)) d𝐹(𝜈),

because summing the integrand over 𝑗 equals zero and 𝜋𝑧𝑖𝑚
𝑗𝑚 /𝜋𝑧𝑖𝑚

𝑗𝑚 = 1. Noting that the condi-
tional expectation of the last displayed equation given all 𝑧’s and 𝑥’s equals zero at the truth and
that the denominator only depends on 𝑧’s and 𝑥’s, we can remove the weighting in the denomi-
nator. Removing the denominator affects efficiency but still provides a validmoment. So we are

left with a sum over the product of two integrals, namely

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

∫ 𝐷𝑖𝑚{𝑦𝑖𝑗𝑚−s𝑗𝑚(𝑧𝑖𝑚, 𝜈∗)} d𝐹(𝜈∗) ∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)(𝑥𝑘
𝑗𝑚𝜈𝑘−

𝐽𝑚

∑
ℓ=0

sℓ𝑚(𝑧𝑖𝑚, 𝜈)𝑥𝑘
ℓ𝑚𝜈𝑘) d𝐹(𝜈).

Thus, approximating the integrals with sums using independentMonte Carlo draws satisfies

the conditions of PP89. While utilizing thismoment will result in an estimator with the same

convergence rates as our estimator, and so will satisfy conformance, it will not be efficient.

6.4 Step 4: Population statistics instead of micro data

Onemay further alter themoment described in section 6.3.1 by integrating (21) over 𝑧,

𝑀
∑
𝑚=1

𝐽𝑚

∑
𝑗=0

( 1
𝑆𝑚

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝑦𝑖𝑗𝑚𝑥𝑘
𝑗𝑚𝑧𝑑

𝑖𝑚 − ∫ 𝜋𝑧
𝑗𝑚𝑥𝑘

𝑗𝑚𝑧𝑑 d𝐺(𝑧)). (23)

This is themoment described in BLP04, eq. 8, and Gandhi andNevo (2021, eq. 4.4).

There are two possible motivations using (23) over (21). The stronger is that it is less data

intensive in that itmaybecomputedusingonly statistics of themicrodata. For example, Sweeting

(2013) uses data from a survey conducted by a third party that reports averages at themarket-

demographic level which correspond to the first term in the summand of (23). The second is that

the right hand side of (23) does not involve a sum over observed consumers. However, in view

of PP89, the total number of simulation draws needed is the same in both cases. To simulate

(21), we need only a finite number of simulation draws per consumer in order not to affect the

convergence rate, as long as all draws are independent, whereas for (23) one needs a number of
25We set𝑥0𝑚 = 0without loss of generality.
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independent draws that is at least proportional to 𝑆.
However, using (23) over (21) has an additional efficiency cost. In particular, (23) does not

exploit the consumer level data in the second term because it does not condition on 𝑧𝑖. It is

straightforward to show that the variance of (23) weakly greater than (21). For ease of notation,

consider the singlemarket casewith𝑥, 𝑧both scalars and let𝜔𝑖 = ∑𝐽
𝑗=0 𝐷𝑖𝑥𝑗𝑦𝑖𝑗𝑧𝑖. Themoments

in (21) and (23) (if evaluated at the truth) have the same Jacobian in expectation. The variance

contribution for observation 𝑖 using (23) equals

𝕍{𝜔𝑖 − 𝔼(𝜔𝑖 | 𝐷𝑖, 𝑋)} = 𝔼𝕍(𝜔𝑖 | 𝐷𝑖, 𝑋) = 𝔼𝕍(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋) + 𝔼𝕍{𝔼(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋) ∣ 𝐷𝑖, 𝑋}

≥ 𝔼𝕍(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋) = 𝕍{𝜔𝑖 − 𝔼(𝜔𝑖 | 𝑧𝑖, 𝐷𝑖, 𝑋)},

which is the variance contribution of observation 𝑖 in (21). These two facts combined with
the sandwich formula for the asymptotic variance of the GMMestimator imply that using (21)

dominates (23).

7 Computation

While the CLER estimator is of theoretical interest, it must also be computationally tractable

in order to be appropriate for applied use. This section discusses two critical computational

aspects of our estimator. First, the CLER estimator involves an optimization over 𝛿which is a
vector of length 𝐽. Inmodern datasets, the number of products across all markets can run into
the hundreds of thousands, posing a potential problem for nonlinear optimization. However,

there are a number of features of our optimization problem that simplify this task considerably.

Second, any estimatormust numerically approximate integrals over demographics 𝑧 and taste
shocks 𝜈.26 As discussed above, the choice of integrationmethodwill impact that accuracy of
the estimator. We discuss several approaches in section 7.2.

7.1 Dimensionality

Wenow describe a feasible algorithm for the computation of the CLER estimator for whichwe

use Newton’s methodwith Trust Regions. Recall from (5) that our optimization problem is

( ̂𝛽, ̂𝜃, ̂𝛿) = argmin
𝛽,𝜃,𝛿

(− log �̂�(𝜃, 𝛿) + Π̂(𝛽, 𝛿)).

26The exception to this is themixed logit, which only usesmicro data and hence only integrates over 𝜈.
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Like BLP95, we start by concentrating out 𝛽which leaves

( ̂𝜃, ̂𝛿) = argmin
𝜃,𝛿

(− log �̂�(𝜃, 𝛿) + Π̂{ ̂𝛽(𝛿), 𝛿}). (24)

We then have two levels of optimization. In the inner optimization we compute ̂𝛿 as a function
of 𝜃, i.e. for each candidate value 𝜃we find aminimizer ̂𝛿(𝜃). In the outer optimization we then
minimize over 𝜃. This approach is similar to that in BLP95 with the important exception that the
inner loopobjective is (5)—the sameas the outer loop objective—rather than the share constraint

𝜋 = 𝑠.
The high-dimensional problem is now confined to the inner loop. For BLP95, tractability

followed from the existence of a contractionmapping to compute 𝜋 = 𝑠. For our problem, first
suppose that (5) is just identified. In this case, Π̂{ ̂𝛽(𝛿), 𝛿} = 0 for all values of 𝛿, in which case
we only need to optimize log �̂� in the inner loop. Conveniently, log �̂� is additively separable

across markets in 𝛿⋅𝑚 and is nearly globally concave in 𝛿 for fixed 𝜃. So we can parallelize the
computation of ̂𝛿⋅𝑚(𝜃)market bymarket, and each computation is highly tractable.

The overidentified case is more complicated. To simplify exposition but without loss of

generality, we will take �̂� in the definition of Π̂ in (9) to be (𝐵⊺𝐵)−1 where𝐵 is a 𝐽 × 𝑑𝑏 matrix

with rows 𝑏⊺
𝑗𝑚, the instruments introduced in (10). Unfortunately, Π̂ is not additively separable

in 𝛿⋅𝑚. However, there are several convenient features whichmake the inner loop tractable.

The first such feature is that ̂𝛽(𝛿) is simply a linear IV estimator, i.e. ̂𝛽(𝛿) =
(𝑋⊺

P𝐵𝑋)−1𝑋⊺
P𝐵𝛿, withP𝐵 = 𝐵(𝐵⊺𝐵)−1𝐵⊺ an orthogonal projectionmatrix. Second, Π̂ is

quadratic in 𝛿. Thus, writingPP𝐵𝑋 = P𝐵𝑋(𝑋⊺
P𝐵𝑋)−1𝑋⊺

P𝐵, (24) becomes

− log �̂�(𝜃, 𝛿) + 1
2

𝛿⊺(P𝐵 − PP𝐵𝑋)𝛿 (25)

Third, (25) combines the computationally convenient likelihood with a convex term, so the

resulting objective can be optimized over 𝛿 via Newton’s method. Fourth, barring collinearities
thematrixP𝐵 −PP𝐵𝑋 is a positive semidefinitematrix of rank 𝑑𝑏 − 𝑑𝛽. Note that by the spectral

decomposition, P𝐵 − PP𝐵𝑋 can hence be expressed in the formKK
⊺ for a 𝑑𝛿 × (𝑑𝑏 − 𝑑𝛽)

matrixK. This is convenient because𝑋may includemany exogenous regressors (eg., brand or

product—rather than product-market—dummies)which also appear in𝐵. SuchK is not unique

but all choices are equivalent: we derive an explicit form forK in lemma 4 in appendix D.

We now turn to the primary complication of applyingNewton’smethod to optimize (25) over
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𝛿 in the inner loop: computation of the inverse of the Hessian (with respect to 𝛿). Just storing a
Hessian in 100,000 parameterswould take 80Gb of memory; the computational cost of taking the

inverse is cubic in 𝑑𝛿 and the result could be subject to substantial numerical error. Fortunately,

we do not need to store or directly invert the full Hessian of (25), 𝐻 + KK
⊺, where 𝐻 is the

Hessianof− log �̂�. Instead,we cancompute the inverseHessian exploiting the above-mentioned
features. The inverse of the Hessian of (25) can be written as

𝐻−1 − 𝐻−1K(𝐼 + K
⊺𝐻−1K)−1K

⊺𝐻−1, (26)

where 𝐼 is the identitymatrix.27

Since log �̂� is additively separable in the 𝛿⋅𝑚’s, 𝐻 is block diagonal, so 𝐻−1 can be effi-

ciently computed and stored. To appreciate the importance of this feature, note that if one

has 1,000markets with 100 inside goods in eachmarket, the problem reduces from inverting a

full 100,000 by 100,000matrix𝐻 + KK
⊺ to inverting a thousand 100 by 100matrices, which

is bothmuch less demanding computationally and reducesmemory demand by a factor 1,000

(i.e., 100, 0002/(1002 × 1, 000)). This makes the optimization step of the inner loop practical for
many products.

The outer loop is over a low dimensional parameter vector, albeit computations of the deriva-

tives involves application of the chain rule to account for inner loop optimization. We have

verified that this procedure can be used successfully for problemswith over 100,000 products

andmillions of consumers.

An evenmore computationally convenient alternative. Although computation of the

CLER estimator is straightforward, there is an alternative that has the same conformance and

efficiency properties as CLER and can be computed evenmore easily.28 This estimator optimizes

the sum of themacro andmicro loglikelihoods over 𝛿 in the inner optimization (dropping the
product level moments), but then optimizes the CLER objective function over 𝜃 in the outer opti-
mization. Doing so avoids the need to compute (26) which permits the inner loop to be entirely

27To see this, note that forΔ = 𝐼 + K
⊺𝐻−1K,

(𝐻−1 −𝐻−1KΔ−1K
⊺𝐻−1)(𝐻 +KK

⊺) = 𝐼 +𝐻−1KK
⊺ −𝐻−1KΔ−1K

⊺ −𝐻−1KΔ−1K
⊺𝐻−1KK

⊺ =
𝐼 + 𝐻−1KΔ−1(𝐼 + K⊺𝐻−1K)⏟⏟⏟⏟⏟⏟⏟⏟⏟

=𝐼

K
⊺ − 𝐻−1KΔ−1K

⊺ − 𝐻−1KΔ−1K
⊺𝐻−1KK

⊺ = 𝐼.

28One reason to avoid implementing CLER directly is that there is usually no convenient way to pass the infor-
mation on the structure of the Hessian to packaged optimization routines. The Grumps package does provide this
functionality.
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parallelized bymarket. As we establish as an intermediate result of theorem 1, this estimator is

asymptotically equivalent to the CLER estimator, but potentially at a lower computational and

programming cost. Because of the presence of the product level moments term, the CLER esti-

mator has some robustness against low shares which the alternative does not inherit, but that is

not the focus of this paper. We have implemented both estimators as part of the Grumps package

using the name cheap to denote this alternative.

7.2 Numerical integration

Aswe have pointed out, the largest disadvantage of our estimator is that a computable version

relies on numerical integrationwhich is costly since to avoid affecting the asymptotic behavior,

the numerical errormust be negligible. However, as always, we can arbitrarily reduce the nu-

merical approximation error by incurring a higher computational cost. In contrast, theMSM

can achieve the same convergence rate by averaging over noisy approximations of these inte-

grals. But asmentioned section 6.3.1, numerical approximation of the share inversion adds an

additional source of complexity for estimators in our setting that enforce share constraints.

The CLER estimator evaluates two types of integrals, those over 𝜈 (e.g., 𝜋𝑧) and those over

both 𝜈 and 𝑧 (e.g., 𝜋). This distinction suggests different integrationmethods for each type.
Quadrature methods are well suited for micro integrals over 𝜈. The distribution of 𝜈 is as-

sumed known and is usually a familiar and tractable one, often normal. Moreover, 𝜈 is often
of small dimension, so the curse of dimensionality associated with tensor product quadrature

methods is less binding.29

The integrals overboth𝑧and𝜈aremoredifficult to compute. Inaddition to (𝑧, 𝜈)beinghigher
dimensional than 𝜈, the distribution of 𝑧 is usually informed by data and so less amenable to
quadraturemethods (e.g., the distribution of income in the consumer population). On the other

hand, they are only computed for each product (𝐽) rather than each product-consumer pair (𝐽𝑆).
Given this, (quasi-)Monte Carlomethods with a high number of draws are appropriate, albeit

this requires the number of Monte Carlo draws to grow faster than the square of the prevailing

convergence rate, which is the same number as is needed forMSMnot to lose efficiency.

We examine the sensitivity of CLER’s numerical performance to the number of nodes used

for numerical integration in section 9.
29If 𝜈 is of high dimension, sparse quadrature methods can be viable alternatives. The designed quadrature

approach of Bansal et al. (2021)may be particularly attractive as all nodes have positive weights.
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8 Inference

This section describes inference on functions of model parameters, including elasticities and

counterfactuals. As discussed above, the conformant property of the CLER estimator ensures

that it can be applied under a wide variety of conditions. This also applies to our inference

procedure. We first outline the intuition behind our approach to inference in section 8.1. We

thenmove to a formal statement of our assumptions and proof in section 8.2.

8.1 Intuition

In all cases, inference will be built upon theHessian of the CLER objective function (5),

𝛽
𝜃𝑧

𝜃𝜈

𝛿

⎡
⎢
⎢
⎢
⎢
⎣

𝜕𝛽 ̂m
⊺�̂�𝜕𝛽⊺ ̂m 0 0 𝜕𝛽 ̂m

⊺�̂�𝜕𝛿⊺ ̂m

0 −𝜕𝜃𝑧𝜃𝑧⊺ log �̂� −𝜕𝜃𝑧𝜃𝜈⊺ log �̂� −𝜕𝜃𝑧𝛿⊺ log �̂�
0 −𝜕𝜃𝜈𝜃𝑧⊺ log �̂� −𝜕𝜃𝜈𝜃𝜈⊺ log �̂� −𝜕𝜃𝜈𝛿⊺ log �̂�

𝜕𝛿 ̂m
⊺�̂�𝜕𝛽⊺ ̂m −𝜕𝛿𝜃𝑧⊺ log �̂� −𝜕𝛿𝜃𝜈⊺ log �̂� 𝜕𝛿 ̂m

⊺�̂�𝜕𝛿⊺ ̂m − 𝜕𝛿𝛿⊺ log �̂�

⎤
⎥
⎥
⎥
⎥
⎦

. (27)

The Hessian alone is sufficient since our estimator is efficient so the usual sandwich formula

collapses. As wewill see below, theHessian conforms to provide valid inference in each of the

cases described in section 4.2. Importantly, the researcher does not need to assume or determine

the rates of convergence of the estimator in her situation to conduct inference correctly.

First consider the leading casewhere𝑆/𝐽 → ∞ and 𝜃𝑧 ≠ 0. In this case, theCLER estimator
is asymptotically equivalent to theMDLE two-step estimator that first estimates (𝜃, 𝛿) and then
plugs in ̂𝛿 to estimate𝛽. With theMDLE, the informationmatrix for𝜓 = [𝜃⊺, 𝛿⊺]⊺ is theHessian
of − log �̂�. Notice that this is the (𝜓, 𝜓) block of (27) with the exception of the 𝜕𝛿 ̂m

⊺�̂�𝜕𝛿⊺ ̂m

term in the (𝛿, 𝛿) block. However, that term diverges at rate 𝐽 and is dominated by−𝜕𝛿𝛿⊺ log �̂�.
Similarly, because ̂𝜓converges faster than ̂𝛽, the (𝛽, 𝛽)block in (27) is all thatmatters for inference
on 𝛽. To see this, note that by the partitioned inverse formula, the (𝛽, 𝛽) block of the inverse of
(27) is

(((𝛽, 𝛽) block) − ((𝛽, 𝛿) block) ∗ ((𝛿, 𝛿) block)−1 ∗ ((𝛿, 𝛽) block))
−1

= (𝜕𝛽 ̂m
⊺�̂�𝜕𝛽⊺ ̂m − 𝜕𝛽 ̂m

⊺�̂�𝜕𝛿⊺ ̂m ∗ (𝜕𝛿 ̂m
⊺�̂�𝜕𝛿⊺ ̂m − 𝜕𝛿𝛿⊺ log �̂�)−1 ∗ 𝜕𝛿 ̂m

⊺�̂�𝜕𝛽⊺ ̂m)
−1

.

Again, since the loglikelihood dominates, the second term inside the outer inverse is asymp-

totically negligible, so the limiting distribution of ̂𝛽 is determined entirely by the product level
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moments.

Now consider the case where 𝑆/𝐽 → ∞ and 𝜃𝑧 = 0. As we show in lemma 5 in appendix E,

the score of the objective with respect to𝜓𝜈 = (𝜃𝜈, 𝛿) becomes collinear, leading to a loss of rank
in the Hessian of log �̂�. However, rank is preserved in (27) due to the presence of the product
level moments in the (𝛿, 𝛿) block. As noted above, this affects the rate of convergence as Π̂will

enter the dominant term of the (𝜓𝜈, 𝜓𝜈) block of the inverse Hessian. However, the rate of ̂𝜃𝑧 is

unaffected since the scorewith respect to 𝜃𝑧 is not collinear and the dominant term of the (𝜃𝑧, 𝜃𝑧)
block of the inverse Hessian will be

−(𝜕𝜃𝑧𝜃𝑧⊺ log �̂� − 𝜕𝜃𝑧𝛿⊺ log �̂� (𝜕𝛿𝛿⊺ log �̂�)−1 𝜕𝛿𝜃𝑧⊺ log �̂�)
−1

, (28)

as we show in lemma 7 in appendix E. Expression (28) converges at rate 𝑆.
Now consider the case where 𝑆/𝐽 → 0. The clearest intuition comes form the extreme

case where 𝑆 = 0 (i.e., BLP95). As we discussed in section 4.2.1, 𝜃, 𝛿 are not identified off the
likelihood alone since log �̂�mic = 0 and log �̂�mac is maximized for any 𝜃 by choosing 𝛿 such that
𝜋 = 𝑠 as we have shown in section section 6.2.30 Consequently, 𝜕𝜓𝜓⊺ log �̂� is then singular,

indeed of rank 𝑑𝛿.31 However, analogous to the 𝜃𝑧 = 0 case, the (𝜓, 𝜓) block in (27) has full rank
due to the product level moments entering the (𝛿, 𝛿) block. Note that because here themicro
data is not available to pin down 𝜃𝑧, we need 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃𝑧 + 𝑑𝜃𝜈 to preserve identification rather

than 𝑑𝑏 ≥ 𝑑𝛽 + 𝑑𝜃𝜈 in the 𝜃𝑧 = 0 case above. It can be shown that the dominant term of the (𝜃, 𝜃)
block of the inverse Hessian has the same form as the corresponding expression for the BLP95

estimator which is𝑂𝑝(𝐽−1); see lemma 8 in appendix E. Returning to the case where 𝑆/𝐽 → 0
but somemicro data exists, Π̂will dominate log �̂� in the Hessian, and all parameters converge at

rate
√

𝐽. However, for the same reasons as stated above, the Hessian remains invertible.
The remaining cases aremerely combinations of the above logic. If 𝑆/𝐽 converges to a non-

zero constant, both log �̂� and Π̂ contribute to the limiting distribution and both are accounted for

in theHessianwith the appropriate weighting. If 𝜃𝑧 → 0, the contribution of Π̂ to the limiting

distribution of 𝜃, 𝛿will be non-negligible but accounted for in theHessian. To summarize, under
different scenarios the relative importance of log �̂� and Π̂ varies. However, by using (27) for

inference, we include all relevant terms so that inference is valid across all these scenarios.
30Since log �̂�mac integrates over 𝑧, we need not distinguish between 𝜃𝑧 and 𝜃𝜈 in this case.
31For any given 𝜃, there is a unique 𝛿 that maximizes log �̂�—or equivalently satisfies the share constraint (Berry,

1994)—so the degree of underidentification is 𝑑𝜃.
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A second complication is that 𝛿 growswith 𝐽, so (27) is also growing. To address this, write
𝛾 = [𝛽⊺, 𝜃⊺, 𝛿⊺]⊺. Recall from section 4.2 that we assume that lim𝑀→∞ max𝑚 𝐽𝑚 < ∞. The

following subsection provides an inferencemethod for finite-dimensional linear combinations

of 𝛾.

8.2 Formal Result

We conduct inference onΛ( ̂𝛾 − 𝛾0), whereΛ is specified in theorem 1.32 The purpose of this

theorem is to demonstrate how the CLER estimator balances different sources of identification

and achieves conformance. The assumptions stated below are stronger than necessary and

the key result obtains under weaker conditions with a longer proof. We will discuss some of

the differences between what is covered by the assumptions and situations under which our

estimator works as they arise.

AssumptionA (Sampling of markets). Themarkets in the sample, indexed by𝑚 = 1, … , 𝑀,

are i.i.d.. Market𝑚 has 𝐽𝑚 products,𝑁𝑚 consumers altogether, and 𝑆𝑚 consumers in themicro

sample. The𝑁𝑚 consumers are i.i.d. draws from a superpopulation formarket𝑚 and the set of

𝑆𝑚 micro consumers are probability𝜒𝑚 ∈ [0, 1] i.i.d. (without replacement) draws from the𝑁𝑚

consumers comprising the population of market𝑚.

Sincemarket selection is random, so are {𝑁𝑚, 𝜒𝑚, 𝐽𝑚}. In addition, the distribution of 𝑁𝑚

varies with 𝑀 and the distribution of 𝜒𝑚 can vary with 𝑀. We define 𝑁 = ∑𝑀
𝑚=1 𝑁𝑚, 𝑆 =

∑𝑀
𝑚=1 𝑆𝑚, and𝐽 = 𝑑𝛿 = ∑𝑀

𝑚=1 𝐽𝑚. Asymptotics are in the number of markets (or equivalently,

products), populationsizes, andpossiblymicroconsumersample sizes (via𝑁𝑚, 𝜒𝑚), asdiscussed

in assumption D. Note that for ease of notation thus far we have referred to limits in 𝑆 and 𝐽,
which under assumption D should be interpreted as limits in𝑀𝔼(𝑁𝑚𝜒𝑚) and𝑀 respectively.

Assumption B (Utility linear in parameters). 𝜇𝑧
𝑗𝑚 and 𝜇𝜈

𝑗𝑚 are for all𝑚 linear in 𝜃𝑧, 𝜃𝜈 respec-

tively.

For convenience,we assume that theheterogeneity termsof utility, in addition tomeanutility,

are linear in parameters. This could easily be relaxed.

Assumption C (Distribution of product characteristics). (a) Observed product characteristics

𝑥⋅𝑚 have bounded support; (b) for some 𝑝𝜉 > 8, 𝔼 exp(𝑝𝜉|𝜉𝑗𝑚|) < ∞.
32In the formal results, a zero subscript denotes the truth.
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Assumption C ensures that the smallest product-level choice probability,min𝑗,𝑚 𝜋𝑗𝑚, does

not go to zero too fast as 𝑀 grows. It is implicit in much of the literature, though it could be

relaxed. Condition (b) is a restriction on the tails of the distribution of 𝜉. It is trivially satisfied if
𝜉 is assumed to have bounded support or is normally distributed.

Assumption D (Rates). (a) 𝑀 → ∞; (b) the distribution of 𝐽𝑚 does not depend on 𝑀 and

for some ̄𝐽 < ∞, ℙ(1 ≤ 𝐽𝑚 ≤ ̄𝐽) = 1; (c) 𝔼(𝑁𝑚𝜒𝑚) ≻ 1; (d) 𝑀2�̄�/𝔼(𝑁𝑚𝜒𝑚) ⪯ 1 and
𝔼(1/𝑁𝑚) ≺ 1, where �̄� = 𝔼𝜒𝑚, 𝑎 ⪯ 𝑏means that 𝑎/𝑏 = 𝑂𝑝(1) or𝑂(1) andwhere⪰, ≺, ≻ are

analogously defined.

Condition (a) in assumption D deviates fromBLiP04, where the number of markets is fixed

and the number of products increases, but is similar to what is assumed inHong et al. (2021);

neither of these papers covers the case with consumermicro data. It is needed for consistent

estimation of 𝛽0 and, more generally, in the absence of or with poor micro consumer data.

Together with (b), (a) requires that the number of markets grows but the number of products per

market does not. These two conditions guarantee that 𝐽 and𝑀 grow at the same rate.

Condition (c) requires the number of micro consumers 𝑆 to grow with 𝑀. We make this

assumption for convenience; if this were not true then the only source of identification would be

the product level moments, which is covered byHong et al. (2021). Finally, the first half of (d)

can bemost easily understood if one considered the case in which𝑁𝑚, 𝜒𝑚 were independent, in

which case it simplifies to𝑀2 ⪯ 𝔼𝑁𝑚, i.e. the averagemarket population size grows no slower

than the square of the number of markets. The second half of (d) says that all marketsmust grow

in population.

AssumptionE (Parameter space). The truevalue𝜃0 is an interiorpointof thecompactparameter

spaceΘ. Further, 𝛿0𝑚 is bounded away from the boundary of the parameter spaceΔ𝑚 = {𝛿𝑚 ∶
∃𝜃 ∈ Θ ∶ 𝛿mac0𝑚 (𝜃) = 𝛿𝑚}, where 𝛿mac0𝑚 (𝜃) (formally defined in appendix F) is, for a given 𝜃, the
maximizer of themacro term of the population likelihood inmarket𝑚, log𝐿mac

𝑚 = 𝔼 log �̂�mac
𝑚 .

The definition of Δ𝑚 is explicitly specified because it depends on 𝑥 and 𝜉, which are random
at the product level. The function 𝛿mac0𝑚 (𝜃) is the Berry (1994) inversion, except that we invert
product choice probabilities rather than observedmarket shares, a distinction that is assumed to

be irrelevant inmuch of the literature. This assumption rules out parameter on the boundary

and associated asymptotic size issues analyzed by Ketz (2019).
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Let𝐵𝑚 be the submatrix of the instrumentmatrix𝐵 corresponding tomarket𝑚, letℬdenote

the sigma field generated by𝐵, and let𝒥 be the sigma field generated by𝐵, 𝑋, 𝜉, {𝑁𝑚}, {𝜒𝑚}.

Assumption F (Product Level Restrictions). (a) The elements of 𝜉 are independent conditional
onℬ; (b)𝔼(𝜉 | ℬ) = 0; (c)𝔼(𝜉𝜉⊺ | ℬ) = 𝐼; (d) 0 < 𝔼(𝐵𝑚𝐵⊺

𝑚/𝐽𝑚) < ∞; (e)𝔼(𝐵𝑚𝑋⊺
𝑚/𝐽𝑚)has

rank𝑑𝑥 ≤ 𝑑𝑏; (f) min‖𝜃−𝜃0‖≥𝜖 Π{𝛿mac0 (𝜃)} ⪰ 𝑀𝜖2;and𝜆min(𝜕𝜃𝛿mac⊺0 (𝜃0)𝒦𝒦⊺𝜕𝜃⊺𝛿mac⊺0 (𝜃0)) ⪰
𝑀.

Assumption F contains a number of conditions that are implicitly made in the literature.

First, (a) and (b) are standard, though (a) can be relaxed at the expense of longer proofs. The

extension is not theoretically interesting, so we do not pursue it here. Condition (c) may look

strong, but heteroskedasticity and some dependence can be accommodated by redefining the

objective function and the same goes for scaling. The only caveat there is that the optimal

weightmatrix can depend on unknown coefficients whichwould have to be estimated in a two

step procedure; the same goes for the scaling parameter. That adjustment is routine and not

consideredhere. Condition (d) is standardandsays that there isnocollinearity in the instruments.

In the proofs, we will take 𝐵⊺𝐵 to be invertible, which is not implied by (d), but is true with

probability approaching one.33 Condition (e) is a standard rank condition.

Condition (f) assumes strong identification off the product levelmoments. This allows us

to highlight the role of themicro likelihood for identificationwithout undue notation. Condi-

tion (f) can fail for three reasons. First, if the product levelmoments just identify𝛽 (e.g., 𝑑𝑏 = 𝑑𝑥),

theΠ term of our estimator can be set to 0 for any (𝜃, 𝛿) and so does not contribute to the estima-
tion of (𝜃0, 𝛿0). Consequently, the asymptotics of our estimator are then covered under standard
maximum likelihood theory, albeit that the dimension of 𝛿 increases. The case of weak product
level instruments is similar.34 Finally, it is possible that the number of strongmoments overi-

dentifies 𝛽 but is insufficient to also identify 𝜃 (e.g., 𝑑𝑥 < 𝑑𝑏 < 𝑑𝑥 + 𝑑𝜃). In this case, the rates of

convergence would depend on the relative divergence rates of 𝑆𝜆2 and𝑀 and also on the linear

combination of the parameters that is being estimated. The statement of theorem 1 is valid for

all three cases, although covering each case would necessitate a longer proof.

Recall that 𝜆 is the weakmicro identification parameter, i.e. the rate at which 𝜃𝑧
0 converges to

33This comment addresses the immaterial technical issue that in the presence of discrete variables 𝐵⊺𝐵 is
singular with positive probability, as is well-known.

34We are using the standard definition of weak instruments here, in which the first stage coefficients decrease to
zero at rate 1/

√
𝑀. Then, it can be shown that our procedure reduces tomaximum likelihood if 𝜆 ≻ 4

√
𝑀/

√
𝑁𝜒

and otherwise is inconsistent.
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zero; 𝜆 = 1 in the case of strongmicro identification.

AssumptionG (Micro identification). LetΔ = ∏𝑀
𝑚=1 Δ𝑚 and ‖𝜃−𝜃0‖2

𝜆 = ‖𝜃𝑧 −𝜃𝑧
0‖2 +𝜆2‖𝜃𝜈 −

𝜃𝜈
0‖2. Then,

inf
𝜃∈Θ∶‖𝜃−𝜃0‖𝜆>0

min
𝛿∈Δ

ℒmic(𝜃, 𝛿)
𝑁𝜒‖𝜃 − 𝜃0‖2

𝜆
⪰ 1,

where ℒmic(𝜃, 𝛿) = log𝐿mic(𝜃0, 𝛿0) − log𝐿mic(𝜃, 𝛿) is minus the centered micro term of the

population likelihood and is formally defined in appendix F.

Assumption G assumes that variation in themicro data is sufficient to identify 𝜃𝑧
0. It allows

for no, weak, or strong identification of 𝜃𝜈
0 based on the value of 𝜆, which is fixed in the case

of strong identification, drifting to zero for weakmicro identification, and zero for lack of mi-

cro identification. It can be justified by a second order Taylor expansion of eachℒmic
𝑚 around

(𝜃0, 𝛿0𝑚).
Although the number of unknown coefficients increases (the number of 𝛿’s increases), it only

does so asmoremarkets are added. In other words, (subject to identification) one could estimate

𝜃 off finitelymanymarkets with an increasing number of consumers in themicro sample. The
problem is hence inherently different from that in the seminonparametric estimation literature

in which there are infinitelymany parameters from the outset.

Theorem 1. Let {Λ} be a sequence of nonrandom 𝑑Λ × (𝑑𝛽 + 𝑑𝜃 + 𝐽)matrices for whichΛΛ⊺

converges to a positive definite 𝑑Λ × 𝑑Λ matrix. Under assumptions A to G,

(Λ ̂𝑉 Λ⊺)−1/2Λ( ̂𝛾 − 𝛾0)
𝑑

→ 𝑁(0, 𝐼), (29)

where ̂𝛾 is the CLER estimator and ̂𝑉 is the inverse of (27).

The sequence of matrices {Λ} is specified such that inference is conducted on a finite dimen-
sional vector of linear combinations of 𝛾0. This assumption will cover traditional counterfactual

analysis (e.g., merger simulation of observed markets). Appendix F contains the proof with

supporting lemmas and an informal outline of the intuition.

While the elements of Λ( ̂𝛾 − 𝛾0) converge at different rates and these rates themselves will
depend on the identifying variation, (Λ ̂𝑉 Λ⊺)−1/2 scales this vector such that the product always

converges to a standard normal and can be used to conduct inferencewithout explicit knowledge

of the rates.

To conduct inference on finite-dimensional nonlinear functions of 𝛾 one can apply the delta
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method. This enables the researcher to conduct inference on arbitrary differentiable functions

of themodel parameters, such as elasticities, pass-through rates, or counterfactual outcomes.

9 Monte Carlo Experiments

This section presentsMonte Carlo simulations across a number of different settings to investi-

gate the performance of our estimator relative to alternatives. We will vary (a) the amount of

micro data available, (b) the degree of heterogeneity in utility due to demographics and unob-

served tastes, (c) the strength of the product level instruments, (d) the accuracy of the numerical

approximation of the log likelihood in our preferred estimator. Varying these settings affects

the relative power of themicro observations and product level exclusion restrictions for estima-

tion of the random coefficients 𝜃𝜈, which affects the precision of all parameters of themodel.35

Throughout, we will compare the CLER estimator, which efficiently utilizes both these sources

of identification, with estimators that emphasize only one.

9.1 Design andEstimators

Our baseline empirical design includes two observable and exogenous product characteristics

(𝑥1
𝑗𝑚, 𝑥2

𝑗𝑚), with associated parameters (𝛽1, 𝛽2); two demographic characteristics (𝑧1
𝑖𝑚, 𝑧2

𝑖𝑚)
interactedwith a single correspondingproduct characteristicwith associatedparameters (𝜃𝑧

1, 𝜃𝑧
2);

and two random coefficients (𝜃𝜈
1, 𝜃𝜈

2).
For each specification, we draw data for 50markets with varying and independent numbers

of products, with themedianmarket having 20 products. There are 100, 000 consumers (𝑁𝑚)

in each market and we vary the size of the micro dataset, with 𝑆𝑚 = 1, 000 the baseline. In
the baseline specification, average share is roughly 2.1%, and the tenth percentile of shares is
roughly 0.06%. Full details of themonte carlo design are presented in appendix G.

We compare three different estimators. First, we consider the CLER estimator, (5). Along

with product characteristics, we include differentiation instruments inΠ following GH20, so

the Π is overidentified for 𝛽 and are potentially useful to identify 𝜃. Second, we consider the
GMM estimator with the share constraint described in section section 6.3. This is a common

approach used in the applied literature andwe implement it using the pyblp package, version

0.13 (Conlon andGortmaker, 2020, 2023). Lastly, we implement theMDLE two-step estimator
35Wealso ran an experimentwherewe varied the amount of variation in consumer demographics acrossmarkets.

Both CLER and GMMperform better withmore cross-market variation, although CLER always outperforms GMM.
Results of this experiment are available from the authors.
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that first estimates (𝜃, 𝛿) byminimizing log �̂�, and then estimates 𝛽 byminimizingΠ(𝛽, ̂𝛿). In
this two-step procedure, product level moment restrictions are not used in the estimation of 𝜃;
the same set of moments as above are used to recover 𝛽.

All three estimators must integrate over both 𝜈 and 𝑧 to compute 𝜋; we implement this
integration using Monte Carlo simulation with 10, 000 consumer draws. The two likelihood
estimators must also compute 𝜋𝑧𝑖𝑚 for each observation in the consumer sample. We use 11-

point Gaussian quadrature in both dimensions of 𝜈, but evaluate this choice in Section 9.2.4.
For all experiments, we estimate the model for each of 500 draws of the data generating

process and present the plots of estimated parameter values across these draws. For CLER and

MDLEwe use a single, arbitrary, starting point. For GMM,which is known to have local optima,

wemulti-start from three values, including the truth.

To summarize,while theGMMestimatorutilizesproduct levelmoments for the identification

of 𝜃𝜈, it fails to incorporate all the information in the likelihood of the consumer sample. The

two-step estimator does the opposite: fully utilizingmicro data for the estimation of 𝜃𝜈 while not

leveraging the information in the product level moments. The CLER estimator fully exploits all

available information from the data.

9.2 Results

9.2.1 Varying the size of the consumer sample. The first experiment varies the size of the

consumer sample for the baseline data generating process. Increasing 𝑆𝑚 should improve the

precision of all estimators. However, for the GMMestimator the benefit comes only from greater

precision in the estimation of the demographicmicro-moment, whereas theMDLE two-step

and CLER estimators fully exploit the consumer data via themicro-likelihood. Figure 4 presents

results for this experiment. Each plot compares the distribution of the three estimators for a

specific consumer sample size (rows) and a given parameter (columns). The CLER estimator is a

solid blue line, the GMMprocedure is a dashed green line, theMDLE two-step procedure is a

dotted black line.

Visually, it is clear that our method dominates both the GMM procedure and the MDLE

two-stepwhen𝑆𝑚 = 250 for 𝜃𝑧. At this smallmicro-sample size, CLER and theGMMprocedure

perform similarly for 𝜃𝜈 and 𝛽, outperforming MDLE, which does not utilize product level
moments when estimating 𝜃 instead relying exclusively on the small micro-sample. As 𝑆𝑚

increases, there is significant improvement in the precision of both ̂𝜃𝑧 and ̂𝜃𝜈 for CLER and
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Figure 4: Distribution of parameters for different sizes of consumer sample.

theMDLE, both of which utilize the score of the likelihoodwith respect to 𝜃𝜈. In contrast, the

GMMestimator has a smaller improvement as 𝑆𝑚 increases, even though themicro-moment

matching the covariance between demographics and purchased product characteristics is more

preciselymeasured. At 𝑆𝑚 = 4, 000 theMDLE and the CLER estimator almost coincide. They
outperform the GMMestimator, particularly for 𝜃𝜈. CLER andMDLE perform similarly when

𝑆𝑚 is high because the information on 𝜃 from the likelihood dominates that of the product level

moments formicro-samples of this size (in our baseline parameterization).

9.2.2 Varying consumer heterogeneity. Wenext consider the estimators’ performance for

different parameterizations of 𝜃while fixing 𝑆𝑚 = 1000. The goal of this exercise is to illustrate
the estimators’ performance as we change the relative power of the two sources of identifying

variation for 𝜃𝜈.

As discussed in section 5, the identifying power of the consumer sample for 𝜃𝜈 becomesweak

as 𝜃𝑧 → 0. Intuitively, if changes in observable demographics do not substantially vary utility
across products, then comparisons between consumers are not useful in measuring substitu-

tion. On the other hand, the product level moments will have identifying power only when the

overidentifying instruments are strong in the sense of GH20.

We focus on the distribution of the estimates of the randomcoefficients, ̂𝜃𝜈. Figure 5 plots the
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distribution of ̂𝜃𝜈
1 across three estimators as we vary 𝜃𝜈 (rows) and 𝜃𝑧 (columns).36 For reference,

the central plot in this image is the baseline data generating process, which is also the DGP in

the central row of Figure 4 where 𝑆𝑚 = 1000. First, note the poor performance of theMDLE
two-step for small values of 𝜃𝑧 (first column), where the identifying variation in the consumer

sample is relativelyweak. In contrast, theGMMandCLER estimators perform similarlywhen 𝜃𝑧

is small. Both rely on the variation from the product level moments that compose Π̂ to estimate

𝜃𝜈. While CLER also incorporates information from themicro sample, this is negligible when 𝜃𝑧

is small.

There are also cases where GMMperforms poorly but theMDLE two-step is comparable to

the CLER estimator. In particular, this occurs when 𝜃𝑧 is large relative to 𝜃𝜈. For some intuition,

note that the differentiation IVs onwhich the GMMestimator relies are a function of distance in

characteristic space to other products and do not directly incorporate consumer demographics.

Roughly, thesemoments target both 𝜃𝜈 and 𝜃𝑧, and rely on the demographicmicro-moment to

distinguish the two. This will bemore difficult when 𝜃𝜈 is large, which effectively adds noise to

themicro-moment. On the other hand, the CLER estimator and theMDLE two-step efficiently

use all information at the consumer level.

Over all cases, the CLER estimator performswell. When only one source of identification

is useful, it roughlymatches the performance of the estimator that exploits that source. When

both sources are useful, it efficiently weights the two. This exercise provides a finite sample

illustration of how conformance affects estimator precision.

9.2.3 Endogenous Characteristics. So far, we have assumed 𝑥𝑗𝑡 to be exogenous, which is

unlikely in empirical applications. This sectionmakes 𝑥1 is endogenous and varies the strength

of the available instrument 𝑏1. To facilitate comparison, we slightly alter the design to vary the

strength of the instrument without altering the distribution of 𝑥1. Specifically, let the vector of

instruments 𝑏1, random noise 𝑢, and the unobserved characteristics 𝜉 all be drawnNormal(0, 1)
and then construct 𝑥1 according to,

𝑥1
𝑗𝑚 = 𝑤𝑎𝑏1

𝑗𝑚 + (1 − 𝑤𝑎)(𝑤𝑐𝑢𝑗𝑚 + (1 − 𝑤𝑐)𝜉𝑗𝑚)
36Wemaintain throughout that 𝜃𝑧

1 = 𝜃𝑧
2 and 𝜃𝜈

1 = 𝜃𝜈
2 and so drop the index subscript for legibility and plot only

the distribution of ̂𝜃𝜈
1 . Due to the symmetry of our specification, the distribution for ̂𝜃𝜈

2 is the same up to simulation
error.
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Figure 5: Distribution of ̂𝜃𝜈 across three estimators as we vary 𝜃𝜈 (rows) and 𝜃𝑧 (columns).

where 𝑤𝑎 = 𝑎/√𝑎2 + (1 − 𝑎)2 for 𝑎 ∈ [0, 1] governs the strength of the instrument 𝑏1 and

𝑤𝑐 = 𝑐/√𝑐2 + (1 − 𝑐)2 for 𝑐 ∈ [0, 1] governs the degree to which the remaining variation
in 𝑥 is due random noise versus the product’s unobserved quality. In estimation, we use 𝑏1 as

an instrument for 𝑥1. We must also construct the differentiation instrument for 𝑥1 using 𝑏1

following GH20. That is, we run a first stage regression of 𝑥1 on 𝑥2 and 𝑏1 and use the resulting

predictions ̂𝑥1 to construct the differentiation IVs.

Figure 6 plots the distribution of (𝜃𝑧
1, 𝜃𝜈

1, 𝛽1) (columns) varying 𝑎 (rows), which governs the
strength of the instrument.37 When 𝑎 = 1, 𝑥1 is exogenous and 𝑏1 = 𝑥1. The only difference

between this specification and that of our baseline (center row of figure 4) is that 𝜉 is normally
distributedhere rather thanPareto. All threeestimatorsperformwell, but theCLERestimatorhas

a slightly tighter distribution around the truth. In the 𝑎 = 0.5 case, the instrument hasmoderate
power. For the 𝜃 parameters, this has no effect on theMDLE two-step, which does not use the
instrument to identify 𝜃. The CLER estimator and the GMMestimator both become less precise.

Thebiggest decline inperformancecomes fromtheGMMestimator,which ignores themicrodata

variation described in Section 5. As expected, all three estimators are less precise for 𝛽. Finally,
when 𝑎 = 0.15, the instrument is weak. As expected, the GMMestimator performs poorly for

all three parameters. However, the distributions of CLE and theMDLE two-step estimator are
37For this figure, 𝑐 = 0.5. Results varying 𝑐 are available on request, but reveal little additional insight.
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essentially identical and remain precise for 𝜃. TheMDLE two-step suffers essentially no loss
of precision for the estimate of 𝜃 from the 𝑎 = 0.5 case. The CLER estimator is no longermore
precise than theMDLE owing to the fact that the product level moments are no longer adding

useful information for 𝜃, but it matches the MDLE’s performance. There is also a difference
for 𝛽 between GMM and the two likelihood estimators. Since theMDLE two-step and CLER

estimators identify 𝜃 and 𝛿 from themicro data, all the useful variation in 𝑏1 is preserved for the

estimation of 𝛽.
9.2.4 Numerical Bias. As discussed in Section 7.2, log likelihood based estimators subject to

bias due to the use of numerical integration over 𝜈. This biaswill growmore severe as 𝜃𝜈 rises. All

the simulations above have used 11-point Gaussian quadrature (121 nodes over two dimensions

of 𝜈) to approximate the likelihood. We now compare the performance of the CLER estimator
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using 19-point quadrature (361 nodes) and the GMM estimator—which does not use the log

likelihood—when 𝜃𝜈 is large and all other parameters of the DGP are set at our baseline.

Figure 7 displays the results. The 19-point quadrature estimator is displayed in purple. In

the first panel 𝜃𝜈 = 2, which corresponds to the top-center panel of figure 5. Approximation
bias appears to beminimal here as all three estimates show similar results. In the center panel,

𝜃𝜈 = 2.5, some bias for the 11-point quadrature estimator is apparent, but it is largely eliminated
bymoving to the 19-point quadrature. The GMMestimator, as expected, is unaffected. Finally,

when 𝜃𝜈 = 3, bias is visible for both the 11 and 19 point estimators, although it is much reduced
for themore precise approximation.

Importantly, the degree of approximation bias is under the control of the researcher, and

can be alleviated at the expense of more computational resources. These results suggest that the

bias can be contained to acceptable levels givenmodern computing resources. Of course, com-

putational demands will rise with the dimension of 𝜃𝜈. However, stipulating that the variation

exists to identify a high dimensional 𝜃𝜈, one could use sparse quadrature methods to attain a

high degree of accuracy with a reasonable number of integration nodes (e.g. Bansal et al., 2021).

10 Conclusion

Random coefficients discrete choice demandmodels are a workhorse of applied industrial or-

ganization. GMM-based estimators have combined data at the consumer and product level to

enhance the precision of estimates of substitution patterns. In this paper, we provide the CLER

estimator tthat optimally combines the likelihood for purchase data with product level exogene-

ity restrictions into a unified estimator that conforms to a wide variety of data environments

and achieves efficiency in each. This estimator does not require additional parametric assump-

tions relative to a GMMestimator. By showing how to transform the CLER estimator into those

used previously in the literature, we illustrate several trade-offs between statistical efficiency and

other researcher concerns, such as computational tractability and data availability. With that

said, we show that the CLER estimator is computationally tractable, suggesting that it will be

directly useful for applied work in a wide variety of settings. Indeed, the CLER estimator has an

additional advantage that inference is more straightforward and correct undermore applicable

assumptions than the standard approach.
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Appendices (for Online Publication)

A Selection
Ourmethodology combines themicro-sample with the product shares by integrating out 𝑧𝑖𝑚 in the
choice probabilities when individual 𝑖 is outside themicro-sample, yielding

𝜋𝐷=0
𝑗𝑚 (𝛿, 𝜃) = ∫Pr(𝑦𝑖𝑗𝑚 = 1 ∩ 𝐷𝑖𝑚 = 0 | 𝑧𝑖𝑚 = 𝑧) d𝐺𝑚(𝑧).

This allows for a variety of forms of selection. Clearly, random selection poses no difficulty as in this
case 𝜋𝐷=0

𝑗𝑚 = Pr(𝐷𝑖𝑚 = 0)𝜋𝑗𝑚, leading to the loglikelihood presented in (6) (up to a constant).
Interestingly, deterministic selection based on 𝑦𝑖⋅𝑚 of the form 𝐷𝑖𝑚 = 𝐷∗

𝑖𝑚1(𝑦𝑖0𝑚 ∈ 𝕁) where
𝐷∗

𝑖𝑚 is random and𝕁 represents a subset of products is also straightforward. This case is common, for
example with vehicle registration data, administrative data of regulated industries, or data on sales of a
particular subset of firms. In this case, Pr(𝐷𝑖𝑚 = 1 ∩ 𝑦𝑖𝑗𝑚 = 1 | 𝑧𝑖𝑚) = Pr(𝐷∗

𝑖𝑚 = 1)𝜋𝑧𝑖𝑚
𝑗𝑚 1(𝑗 ∈ 𝕁), so

we have

𝜋𝐷=0
𝑗𝑚 =

⎧{
⎨{⎩

𝜋𝑗𝑚 𝑗 ∉ 𝕁

Pr(𝐷∗
𝑖𝑚 = 0)𝜋𝑗𝑚 𝑗 ∈ 𝕁

.

Moreover, in both of the above cases, because only logarithms of the choice probabilities appear in the
loglikelihood, the Pr(𝐷∗

𝑖𝑚 = 0) factor only adds a constant to the loglikelihood and is hence irrelevant.
Selection dependent on 𝑧𝑖𝑚 can be accommodated by accounting for selectionwhen integrating over

the distribution of demographics. 𝐺𝐷=0
𝑚 (𝑧), the distribution of 𝑧𝑖𝑚 inmarket𝑚 but not in themicro

sample, and its complement𝐺𝐷=1
𝑚 (𝑧) are easy to compute from the consumer level data and the known

distribution of 𝑧𝑖𝑚 in the population,𝐺𝑚(𝑧). If selection does not depend on 𝑦𝑖⋅𝑚 except through 𝑧𝑖𝑚

then,

𝜋𝐷=0
𝑗𝑚 = ∫Pr(𝐷𝑖𝑚 = 0 | 𝑧𝑖𝑚 = 𝑧)𝜋𝑧

𝑗𝑚 d𝐺𝑚(𝑧) = Pr(𝐷𝑖𝑚 = 0) ∫ 𝜋𝑧
𝑗𝑚(𝛿, 𝜃) d𝐺𝐷=0

𝑚 (𝑧).

More general formswould have to be explicitly modeled and are outside the scope of this paper.

B Weightmatrix is block-diagonal

Note that the expectation of the score of log �̂� given𝑥, 𝜉 is for 𝛾 = [𝛽⊺, 𝜃⊺, 𝛿⊺]⊺ under randomsampling
equal to
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𝔼(
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚

𝐽𝑚

∑
𝑗=0

𝑌𝑖𝑗𝑚

𝜋𝑧𝑖𝑚
𝑗𝑚

𝜕𝛾𝜋𝑧𝑖𝑚
𝑗𝑚 +

𝑀
∑
𝑚=1

𝑁𝑚

∑
𝑖=1

(1 − 𝐷𝑖𝑚)
𝐽𝑚

∑
𝑗=0

(1 − 𝐷𝑖𝑚)
𝑌𝑖𝑗𝑚

𝜋𝑗𝑚
𝜕𝛾𝜋𝑗𝑚 ∣ 𝑥, 𝜉) =

𝔼(
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚𝜕𝛾

𝐽𝑚

∑
𝑗=0

𝜋𝑧𝑖𝑚
𝑗𝑚

⏟
=1

+
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

(1 − 𝐷𝑖𝑚)𝜕𝛾

𝐽𝑚

∑
𝑗=0

𝜋𝑗𝑚
⏟

=1

∣ 𝑥, 𝜉) = 0.

C Share constraints

C.1 Efficiency considerations: a simple example
Consider the situation in which we have a randomly selected consumer level sample from a single
market in addition to product level data including shares. Then the objective function can be written as

log �̂�(𝜓) =
𝑁

∑
𝑖=1

{𝐷𝑖 log𝐿mic
𝑖 (𝜓) + 𝜔(1 − 𝐷𝑖) log𝐿mac

𝑖 (𝜓)}, (30)

for 𝜔 = 1 and𝜓 = [𝜃⊺, 𝛿⊺]where log𝐿mic
𝑖 = ∑𝑗 𝑦𝑖𝑗 log𝜋𝑧𝑖

𝑗 and log𝐿mac
𝑖 = ∑𝑗 𝑦𝑖𝑗 log𝜋𝑗 are contribu-

tions to the loglikelihood for observation 𝑖 and𝐷𝑖 is themicro selection dummywhich is independent
of everything else and equals one with fixed probability 𝜒. We allow for 0 ≤ 𝜔 < ∞ to incorporate
the possibility of unequal weighting. Both intuition andmathematics indicate that choosing 𝜔 = 1 is
optimal.

Lemma 2. Under the stated assumptions we have,
√

𝑁( ̂𝜓 − 𝜓)
𝑑

→ 𝑁(0, 𝑉 ), where 𝑉 = (𝜒𝐴 +
𝜔(1 − 𝜒)𝐵)−1(𝜒𝐴 + 𝜔2(1 − 𝜒)𝐵)(𝜒𝐴 + 𝜔(1 − 𝜒)𝐵)−1,with𝐴 = −𝔼{𝜕𝜓𝜓⊺ log𝐿mic

𝑖 (𝜓)} and𝐵 =
−𝔼{𝜕𝜓𝜓⊺ log𝐿mac

𝑖 (𝜓)}. The optimal weight 𝜔 equals one.

Proof. The asymptotic distribution is an immediate consequence of standard extremum estimation
theory. Since both𝐴, 𝐵 ≥ 0, the first derivative of 𝑉with respect to 𝜔 equals zero at 𝜔 = 1 and the
second derivative of 𝑉with respect to 𝜔 equals

𝜒𝐶−1𝐵𝐶−1 + 𝜒2𝐶−1𝐵𝐶−1𝐵𝐶−1 + 3𝜔𝜒3𝐶−1𝐵𝐶−1𝐵𝐶−1𝐵𝐶−1 ≥ 0,

where𝐶 = 𝜒𝐴 + 𝜔(1 − 𝜒)𝐵, which follows from tedious but simple calculus.

We now turn to the possibility that one maximizes the consumer level likelihood subject to the
product level sharesmatching the choice probabilities. We do so by considering the asymptotic variance
of

̂𝜓∗
𝜔 = argmax

𝜓

𝑁
∑
𝑖=1

{𝐷𝑖 log𝐿mic
𝑖 (𝜓) + 𝜔 log𝐿mac

𝑖 (𝜓)}, (31)

as a function of 𝜔 and then letting𝜔 → ∞. Note that imposing that the gradient of ∑𝑁
𝑖=1 log𝐿mac

𝑖 equal
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zero is equivalent to imposing the product level share equations. Note further that there is a subtle
but important difference between (30) and (31) in that in (31) we sum over all log𝐿mac

𝑖 , not only over
those we lack consumer level data on. Finally, using only the product level likelihood is insufficient for
identification since all first order conditions are satisfied by setting shares equal to choice probabilities.

Lemma 3. Let 𝑉 ∗
𝜔 be the asymptotic variance of ̂𝜓∗

𝜔. Then 𝑉 ∗
∞ = lim𝜔→∞ 𝑉 ∗

𝜔 =
{𝜒𝐴𝑈0(𝑈⊺

0 𝐴𝑈0)−1𝑈⊺
0 𝐴 + 𝐵}−1 ≥ 𝑉 ,where𝑈0 contains a full set of orthogonal unit length eigenvec-

tors of the null space of 𝐵.

Proof. Standard extremum estimation theory yields 𝑉 ∗
𝜔 = (𝜒𝐴 + 𝜔𝐵)−1{𝜒𝐴 + (2𝜒𝜔 + 𝜔2)𝐵}(𝜒𝐴 +

𝜔𝐵)−1. Taking 𝜔 → ∞ means that the 2𝜒𝜔𝐵 term is negligible compared to 𝜔2𝐵. The same is not
true for 𝜒𝐴 since𝐵 does not have full rank. Use the spectral decomposition𝐵 = 𝑈1𝐷1𝑈⊺

1 where𝑈1

contains orthogonal eigenvectors corresponding to nonzero eigenvalues. It is straightforward to verify
that the inverse of 𝜒𝐴 + 𝜔2𝐵 is (up to terms that vanish as 𝜔 → ∞) equal to 𝑈0(𝜒𝑈⊺

0 𝐴𝑈0)−1𝑈⊺
0 +

𝑈1𝐷−1
1 𝑈⊺

1 /𝜔2.38 Pre and postmultiply by 𝜒𝐴 + 𝜔𝐵 and take 𝜔 → ∞ to obtain 𝑉 ∗
∞. Finally, note that

𝑉 ∗
∞

−1 − 𝑉 −1 = 𝜒𝐴𝑈0(𝑈⊺
0 𝐴𝑈0)−1𝑈⊺

0 𝐴 + 𝐵 − {𝜒𝐴 + (1 − 𝜒)𝐵} =

𝜒{𝐴𝑈0(𝑈⊺
0 𝐴𝑈0)−1𝑈⊺

0 𝐴 − 𝐴 + 𝐵} = 𝜒[(𝐴 − 𝐵)𝑈0{𝑈⊺
0 (𝐴 − 𝐵)𝑈0}−1𝑈⊺

0 (𝐴 − 𝐵) − (𝐴 − 𝐵)] ≤ 0,

since the right hand side is minus an annihilatormatrix.

The proof shows that equality of the asymptotic variance only obtains if 𝐴 − 𝐵 is in the null space of
𝐵, whichwould happen if the coefficients on all consumer level regressors equaled zero. Conversely,
one would expect the difference to be large if the consumer level regressors are informative.
A second consequence is that the efficiency improvement is greatest for the estimation of the 𝛿

coefficients. The intuition for this finding is that imposing the aggregate share equations does not limit
the exploitation of variation in themicro level regressors, but it does suggest that information contained
only in the consumer level sample is not used to recover coefficients on product level coefficients.

C.2 Asymptotic variance comparison in a singlemarket
This appendix provides formulas for the asymptotic variance of theMDLE of 𝜓 and the estimator that
maximizes themixed logit objective function subject to the share constraints for a singlemarket, i.e.
𝑚 = 1. The formulas beloware valid for the case inwhich selection is random; otherwise an adjustment
should bemade, e.g. 𝜋𝐷=0

𝑗 should replace 𝜋𝑗 and some cancellations do then not obtain.
We use 𝕃mic to denote 𝔼 ∑𝐽

𝑗=0 𝑌𝑖𝑗 log𝜋𝑧𝑖
𝑗 , 𝕃mic

𝜓 its gradient, 𝕃mic
𝜓𝜓 its Hessian, and 𝕃mac =

𝔼 ∑𝐽
𝑗=0 𝑌𝑖𝑗 log𝜋𝑗. Let similar symbols be analogously defined.

For theMDLE, if 𝜒 > 0, the asymptotic variance of
√

𝑁( ̂𝜓 − 𝜓) and 𝜒 > 0 is then

38Just premultiply by𝑈⊺
0 , 𝑈⊺

1 and postmultiply by𝑈0, 𝑈1 (four combinations) noting that𝑈⊺
0 𝑈0 and𝑈⊺

1 𝑈1
are the identitymatrix and the other products are zeromatrices.
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−{𝜒𝕃mic
𝜓𝜓 + (1 − 𝜒)𝕃mac

𝜓𝜓 }−1. (32)

Fοr𝜒 = 0, consider the limit distribution of
√

𝑁𝜒( ̂𝜓 − 𝜓) for𝜒 > 0, i.e. multiply (32) by 𝜒 and then let
𝜒 ↓ 0. This takes some caution since 𝕃mac

𝜓𝜓 is generally singular.
The promised but incorrect asymptotic variance for the share constraint estimator is

− [
𝐼

𝜕𝜃𝛿⊺] Φ−1 [𝐼 𝜕𝜃⊺𝛿] / 𝜒, (incorrect variance)

where 𝜕𝜃⊺𝛿 = −(𝕃mac
𝛿𝛿 )−1𝕃mac

𝛿𝜃 and Φ = 𝕃mic
𝜃𝜃 + 𝜕𝜃𝛿⊺𝕃mic

𝛿𝜃 + 𝕃mic
𝜃𝛿 𝜕𝜃⊺𝛿 + 𝜕𝜃𝛿⊺𝕃mic

𝛿𝛿 𝜕𝜃⊺𝛿. The correct
asymptotic variance formula for the share constrained estimator is

− [
𝜒Φ 𝜒(𝕃mic

𝜃𝛿 + 𝜕𝜃𝛿⊺𝕃mic
𝛿𝛿 )

𝕃mac
𝛿𝜃 𝕃mac

𝛿𝛿
]

−1

[
𝜒Φ 0
0 𝕃mac

𝛿𝛿
] [

𝜒Φ 𝕃mac
𝜃𝛿

𝜒(𝕃mic
𝛿𝜃 + 𝕃mic

𝛿𝛿 𝜕𝜃⊺𝛿) 𝕃mac
𝛿𝛿

]
−1

. (33)

The formula in (33) is based on the fact that the share constrained estimator uses the followingmoment
conditions:

⎧
{{
⎨
{{
⎩

𝑁
∑
𝑖=1

𝐽
∑
𝑗=0

𝑦𝑖𝑗𝐷𝑖(𝜕𝜃 log𝜋𝑧𝑖
𝑗 + 𝜕𝜃

̂𝛿⊺𝜕𝛿 log𝜋𝑧𝑖
𝑗 ) = 0,

𝑁
∑
𝑖=1

𝐽
∑
𝑗=0

𝑦𝑖𝑗𝜕𝛿 log𝜋𝑗 = 0,
(34)

where 𝜕𝜃
̂𝛿⊺ = − ∑𝑁

𝑖=1 ∑𝐽
𝑗=0 𝑦𝑖𝑗𝜕𝜃𝛿⊺ log𝜋𝑗(∑𝑁

𝑖=1 ∑𝐽
𝑗=0 𝑦𝑖𝑗𝜕𝛿𝛿⊺ log𝜋𝑗)

−1.
Finally, a mixed logit estimator ignoring the product share information would have asymptotic

variance (−𝕃mic
𝜓𝜓)−1/𝜒.

D Computation
The following lemma shows that the 𝑑𝛿 × 𝑑𝛿 matrixP𝐵 − PP𝐵𝑋 used in (25) can be expressed as the
product of a 𝑑𝛿 × (𝑑𝑏 − 𝑑𝛽)matrix with its transpose. Note thanwhen computingK it is useful to first
project out all exogenous regressors that appear in both𝑋 and𝐵 because it is less expensive to compute
the singular value decomposition of amatrix of lower rank.

Lemma 4. Let 𝑋 = [𝐶 �̃�] and 𝐵 = [𝐶 �̃�], i.e. 𝐶 are the columns shared by 𝑋 and 𝐵. Let further
𝑋∗ = M𝐶�̃� and𝐵∗ = M𝐶�̃�withM𝐶 an annihilatormatrix (for𝐶). Then,

∀𝛿 ∶ {𝛿 − 𝑋 ̂𝛽(𝛿)}⊺
P𝐵{𝛿 − 𝑋 ̂𝛽(𝛿)} = 𝛿⊺

KK
⊺𝛿, (35)

whereK = U𝐵MU
⊺
𝐵U𝑋

withU𝐵,U𝑋matriceswithorthonormal columns spanningexactly the column
spaces of 𝐵∗ and𝑋∗, respectively.
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Proof. Recall from the text in section 7 that (35) can be expressed as 𝛿⊺
P∗𝛿whereP∗ = P𝐵 − PP𝐵𝑋.

Noting thatP𝐵 = P𝐶 + P𝐵∗ andPP𝐵𝑋 = P𝐶 + PP𝐵∗𝑋∗ , we haveP∗ = P𝐵∗ − PP𝐵∗𝑋∗ . The stated
result then follows by application of the singular value decomposition to both𝐵∗ and𝑋∗.

E Hessian lemmas
This appendix shows several statements asserted in section 8. First we show that the scores of the
objective function with respect to 𝜃𝜈 and 𝛿 are collinear if 𝜃𝑧 = 0, for which the following lemma
suffices.

Lemma 5. Let𝜓𝜈
𝑚 = [𝜃𝜈⊺, 𝛿⊺

𝑚]⊺. If 𝜃𝑧 = 0 then 𝜕𝜓𝜈
𝑚𝜓𝜈⊺

𝑚
log𝐿 can have rank atmost 𝐽𝑚.

Proof. Consider the case in which𝜒𝑚 = 1, which is no less favorable than any other case. Then, since
𝜃𝑧 = 0, 𝜋𝑧

𝑗𝑚 is flat in 𝑧 and hence at the truth,

𝜕𝜓𝜈
𝑚
log �̂� =

𝑁𝑚

∑
𝑖=1

𝐽𝑚

∑
𝑗=0

𝑦𝑖𝑗𝑚𝑣𝑗𝑚,

for some (𝐽𝑚 + 𝑑𝜃𝜈)-dimensional vectors {𝑣𝑗𝑚}𝐽𝑚
𝑗=0. Now, because the expectation of the score is zero at

the truth,∑𝐽𝑚
𝑗=0 𝜋𝑗𝑚𝑣𝑗𝑚 = 0, so 𝑣0𝑚 = − ∑𝐽𝑚

𝑗=1 𝜋𝑗𝑚𝑣𝑗𝑚/𝜋0𝑚 is a linear combination of the remaining
𝑣𝑗𝑚’s, so the {𝑣𝑗𝑚} span a space of dimension no greater than 𝐽𝑚. Further, recalling from section 8 that
𝒥 is the sigma field generated by𝐵, 𝑋, 𝜉, {𝑁𝑚}, {𝜒𝑚} ,

𝔼(𝜕𝜓𝜈
𝑚
log �̂� 𝜕𝜓𝜈⊺

𝑚
log �̂� ∣ 𝒥) = 𝔼(

𝐽𝑚

∑
𝑗=0

𝐽𝑚

∑
𝑗∗=0

𝑌𝑖𝑗𝑚𝑣𝑗𝑚𝑌𝑖𝑗∗𝑚𝑣⊺
𝑗∗𝑚 ∣ 𝒥) =

𝐽𝑚

∑
𝑗=0

𝜋𝑗𝑚𝑣𝑗𝑚𝑣⊺
𝑗𝑚,

which hence has rank no greater than 𝐽𝑚. Apply the informationmatrix equality.

Lemma 6.

− 𝜕𝜃𝜃⊺ log �̂� − 𝜕𝜃𝛿⊺ log �̂�(−𝜕𝛿𝛿⊺ log �̂� + 𝜕𝛿𝛿⊺Π̂)𝜕𝛿𝜃⊺ log �̂� ≃

− (𝜕𝜃𝜃⊺ log �̂� − 𝜕𝜃𝛿⊺ log �̂�(𝜕𝛿𝛿⊺ log �̂�)−1𝜕𝛿𝜃⊺ log �̂�)+

𝜕𝜃𝛿⊺ log �̂�(𝜕𝛿𝛿⊺ log �̂�)−1𝜕𝛿𝛿⊺Π̂(𝜕𝛿𝛿⊺ log �̂�)−1𝜕𝛿𝜃⊺ log �̂�.

Proof. Simply uses (𝐴 + 𝐵)−1 ≈ 𝐴−1 − 𝐴−1𝐵𝐴−1 for𝐴 dominating𝐵.

From here on, we use the convention that superscripts to amatrix indicate the corresponding block
of the inverse of thematrix.

Lemma 7. If 𝑁𝜒/𝑀 → ∞ and 𝜃𝑧 = 0 then the dominant term of the (𝜃𝑧, 𝜃𝑧) block of the inverse
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Hessian evaluated at the truth is

−(𝜕𝜃𝑧𝜃𝑧⊺ log �̂� − 𝜕𝜃𝑧𝛿⊺ log �̂� (𝜕𝛿𝛿⊺ log �̂�)−1 𝜕𝛿𝜃𝑧⊺ log �̂�)
−1

,

Proof. First, note that by partitioned inverses,

Ω̂𝜓𝜓 =
⎡
⎢⎢
⎣

−𝜕𝜃𝑧𝜃𝑧⊺ log �̂� −𝜕𝜃𝑧𝜃𝜈⊺ log �̂� −𝜕𝜃𝑧𝛿⊺ log �̂�
−𝜕𝜃𝜈𝜃𝑧⊺ log �̂� −𝜕𝜃𝜈𝜃𝜈⊺ log �̂� −𝜕𝜃𝜈𝛿⊺ log �̂�
−𝜕𝛿𝜃𝑧⊺ log �̂� −𝜕𝛿𝜃𝜈⊺ log �̂� −𝜕𝛿𝛿⊺ log �̂� + 𝜕𝛿𝛿⊺Π̂∗

⎤
⎥⎥
⎦

−1

,

where 𝜕𝛿𝛿⊺Π̂∗ = 𝜕𝛿𝛿⊺Π̂ − 𝜕𝛿𝛽⊺Π̂(𝜕𝛽𝛽⊺Π̂)−1𝜕𝛽𝛿⊺Π̂. Since−𝔼(𝜕𝜓𝜈𝜓𝜈⊺ log �̂� | 𝒥) is positive semidefinite
with rank𝐽by lemma5,wecanreplace𝜕𝜓𝜈𝜓𝜈⊺ log �̂�withA𝜕𝛿𝛿⊺ log �̂�A⊺. Thus, bypartitioned inverses
we get

Ω̂𝜃𝑧𝜃𝑧 ≃ (𝜕𝜃𝑧𝛿⊺ log �̂� − 𝜕𝜃𝑧𝛿⊺ log �̂�A⊺(−A𝜕𝛿𝛿⊺ log �̂�A⊺ + 𝜕𝛿𝛿⊺Π̂∗)
−1
A𝜕𝛿𝜃𝑧⊺ log �̂�)

−1

≃ (−𝜕𝜃𝑧𝜃𝑧⊺ log �̂� + 𝜕𝜃𝑧𝛿⊺ log �̂�(𝜕𝛿𝛿⊺ log �̂�)
−1

𝜕𝛿𝜃𝑧⊺ log �̂�),

as asserted.

Lemma 8. Absent consumer data and evaluated at the truth, Ω̂𝜃𝜈𝜃𝜈 ≃ (𝜕𝜃𝛿⊺𝜕𝛿𝛿⊺Π̂∗𝜕𝜃⊺𝛿)−1,where
𝜕𝛿𝛿⊺Π̂∗ was defined in lemma 7 andwhere 𝛿(𝜃) solves the (expectation) share constraint.

Proof. By lemma 6we get,

Ω̂𝜃𝜈𝜃𝜈 = (−𝜕𝜃𝜈𝜃𝜈⊺ log �̂� − 𝜕𝜃𝜈𝛿⊺ log �̂�(−𝜕𝛿𝛿⊺ log �̂� + 𝜕𝛿𝛿⊺Π̂∗)
−1

𝜕𝛿𝜃𝜈⊺ log �̂�)
−1

≃

(−𝜕𝜃𝜈𝜃𝜈⊺ log �̂� + 𝜕𝜃𝜈𝛿⊺ log �̂�(𝜕𝛿𝛿⊺ log �̂�)
−1

𝜕𝛿𝜃𝜈⊺ log �̂�+

𝜕𝜃𝜈𝛿⊺ log �̂�(−𝜕𝛿𝛿⊺ log �̂�)
−1

𝜕𝛿𝛿⊺Π̂∗(𝜕𝛿𝛿⊺ log �̂�)
−1

𝜕𝛿𝜃𝜈⊺ log �̂�)
−1

≃ (𝜕𝜃𝛿⊺𝜕𝛿𝛿⊺Π̂∗𝜕𝜃⊺𝛿)
−1

,

where the last step follows byKhinchine’sweak lawof large numbers and the implicit function theorem.
Note that the right hand side in the lemma statement is exactly the 𝜃𝜈 component of the asymptotic
variancematrix of a BLPGMMestimator.

F Proof of Theorem 1
The proof requires the introduction of some notation. First, we define a recentered version of our log
likelihood,
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̂ℒmac
𝑚 (𝜃, 𝛿𝑚) = log

�̂�mac(𝜃0, 𝛿0)
�̂�mac(𝜃, 𝛿)

= 𝑁𝑚

𝐽𝑚

∑
𝑗=0

𝑠𝑗𝑚 log
𝜋𝑗𝑚(𝜓0𝑚)
𝜋𝑗𝑚(𝜃, 𝛿𝑚)

,

̂ℒmic
𝑚 (𝜃, 𝛿𝑚) = log

�̂�mic(𝜃0, 𝛿0)
�̂�mic(𝜃, 𝛿)

=
𝑁𝑚

∑
𝑖=1

𝐷𝑖𝑚

𝐽𝑚

∑
𝑗=0

𝑌𝑖𝑗𝑚 log
𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜓0𝑚)𝜋𝑗𝑚(𝜃, 𝛿𝑚)
𝜋𝑗𝑚(𝜓0𝑚)𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜃, 𝛿𝑚)
,

(36)

and use ̂ℒ𝑚 = ̂ℒmac
𝑚 + ̂ℒmic

𝑚 , ̂ℒ = ∑𝑀
𝑚=1

̂ℒ𝑚. The definitions ̂ℒmac
𝑚 , ̂ℒmic

𝑚 are recenterings of themacro
andmicro terms of − log �̂�𝑚 to make them equal to zero if evaluated at the truth. Their population
analogs have no hat, e.g.ℒmic

𝑚 (𝜃, 𝛿𝑚) = 𝔼{ ̂ℒmic
𝑚 (𝜃, 𝛿𝑚) ∣ 𝒥}. Subscripts corresponding to parameters

denote partial derivatives, e.g.ℒmic
𝑚𝜓𝜓 is the Hessian of themicro likelihood formarket𝑚, where we use

the subscripts 𝑧, 𝜈 to denote partial derivatives with respect to 𝜃𝑧, 𝜃𝜈.
Let Ω̂(𝜓) = ̂ℒ(𝜓) + Π(𝛿)with ̂ℒ(𝜓) = − log �̂�(𝜓) andΠ(𝛿) = Π̂{ ̂𝛽(𝛿), 𝛿} = 𝛿⊺𝒦𝒦⊺𝛿/2. This is

our objective function (5) after concentrating out 𝛽 and the above-mentioned recentering. We further
defineΩ(𝜓) = ℒ(𝜓) + Π(𝛿).
Next, we define the objects, 𝛿0(𝜃) = 𝛿Ω

0 (𝜃) ∈ argmin𝛿 Ω(𝜃, 𝛿), 𝛿ℒ
0 (𝜃) ∈ argmin𝛿 ℒ(𝜃, 𝛿), and

𝛿mac0 (𝜃) = argmin𝛿 ℒmac(𝜃, 𝛿) and their sample analogs which receive hats. 𝛿mac0 (𝜃) is unique since
there is a one to onemapping from choice probabilities to 𝛿 as shown by Berry (1994). Wewill show that
all three are equal at 𝜃0.39 We further show that the difference between 𝛿ℒ

0 (𝜃) and 𝛿0(𝜃) is negligible at
any 𝜃 ∈ Θ.
Finally, let Ω̂∗(𝜃, 𝛿) = ̂ℒmic(𝜃, 𝛿) + ̂ℒmac*(𝜃, 𝛿) + Π(𝛿),where

̂ℒmac*
𝑚 (𝜃, 𝛿𝑚) = 𝑁𝑚

𝐽𝑚

∑
𝑗=0

𝑠𝑗𝑚 log
𝑠𝑗𝑚

𝜋𝑗𝑚(𝜃, 𝛿𝑚)
,

so we replaced the true choice probabilities in the numerator of ̂ℒmac
𝑚 with observedmarket shares, 𝑠𝑗𝑚.

Define further ℛ̂(𝜃, 𝛿) = ℒmic(𝜃, 𝛿) + ̂ℒmac*(𝜃, 𝛿) + Π{𝛿mac0 (𝜃)}.where the samplemicro likelihood is
replaced with its population analog and the argument of Π is now 𝛿mac0 (𝜃) instead of 𝛿.

Proof of theorem 1. Because ̂𝛽 is a linear combination of ̂𝛿, we only establish asymptotic normality
of Λ( ̂𝜓 − 𝜓0) to reduce notation. Now, the (𝜓, 𝜓) block of ̂𝑉 is Ω̂−1

𝜓𝜓( ̂𝜓) so we will show asymptotic
normality of �̂�−1/2

Λ Λ( ̂𝜓 − 𝜓0)where �̂�Λ = ΛΩ̂−1
𝜓𝜓( ̂𝜓)Λ⊺.

Lemma9 inappendixF.2 establishes consistencyof ̂𝜃 for𝜃0, whichguarantees that Ω̂( ̂𝜃, 𝛿) is convex in
𝛿with probability approaching one. Asymptotic normality is then established by lemmas 26 and 34.

Before presenting the supporting lemmas, we outline the intuition of the proof.
39In fact, the steeper gradient of 𝛿0 at 𝜃0 relative to 𝛿mac0 (𝜃) is the source of our estimator’s efficiency gains

relative to share constrainedmethods discussed in section 6.2.
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F.1 Intuitive outline of the proof

F.1.1 Consistency of ̂𝜃. We establish consistency of ̂𝜃 for 𝜃0 in lemma 9 in appendix F.2. We do so
in two steps, first obtaining an upper bound to the rate at which (a centered version of) the profiled
objective function at the truth (𝜃0),min𝛿 Ω̂∗(𝜃0, 𝛿) diverges, then obtaining a lower bound to the rate at
which the profiled objective function outside an 𝜖-neigborhood of 𝜃0 diverges. The lower bound outside
the neighborhood diverges faster than the upper bound inside. Since ̂𝜃minimizesmin𝛿 Ω̂∗(𝜃, 𝛿), itmust
be true that ̂𝜃

𝑝
→ 𝜃0. The following two paragraphs describe these steps inmore detail.

We achieve the first step by obtaining an upper bound on the divergence rate of Ω̂∗{𝜃0, ̂𝛿mac(𝜃0)},
which is trivially above theminimized profiled likelihood. This is (up to a constant shift) equal to the
profiled objective function of a share constrained estimator. Lemma 10 establishes this bound. Noting
that Ω̂∗ consists of three terms, Ω̂∗(𝜃, 𝛿) = ̂ℒmic(𝜃, 𝛿) + ̂ℒmac*(𝜃, 𝛿) + Π(𝛿), the lemma proceeds by
bounding the individual terms: The first term is bounded by lemma 11, which establishes a bound of
𝜆𝑀

√
�̄�. The second term, ̂ℒmac*{𝜃0, ̂𝛿mac(𝜃0)}, equals 0 by construction. The final term is shown to be

bounded in probability by lemma 12.
Lemma 18 establishes the second step by providing a lower bound on the rate of the profiled objective

outside a neighborhood of 𝜃0. Here wemake use of a surrogate ℛ̂ of the unprofiled objective Ω̂∗ which
(a) replaces ̂ℒmic withℒmic, its expectation condtional on 𝒥, and (b) replacesΠ(𝛿)withΠ{𝛿mac0 (𝜃)}.
Lemma 20 shows that Ω̂∗ is well approximated by ℛ̂ in the sense that |Ω̂∗ − ℛ̂|/ℛ̂ is uniformly small.
Lemma 19 shows that ℛ̂ diverges at at least the rate𝑁𝜒𝜆2 + 𝑀 uniformly in (𝜃, 𝛿) for 𝜃 away from 𝜃0.
With consistency established, lemma 25 provides a lower bound on the rate of convergence using the

samemachinery.
F.1.2 Asymptotic normality. With consistency established, we show asymptotic normality in two
(large) steps in appendix F.3. First, we show in lemma 26 that for any vector 𝑣, the estimation error
𝑣⊺( ̂𝜓 − 𝜓0) is equal to−𝑣⊺Ω−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) plus asymptotically negligible terms. In the second step,
we apply a central limit theorem formartingale difference sequences to show asymptotic normality of
�̂�−1/2

Λ ΛΩ−1
𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) in lemma 34. Recalling that �̂�Λ = ΛΩ̂−1

𝜓𝜓( ̂𝜓)Λ⊺, this fact, together with the
first step, establishes asymptotic normality of �̂�−1/2

Λ Λ( ̂𝜓 − 𝜓0) and completes the proof.
The first step has three parts which correspond to 𝛿, 𝜃𝑧 and 𝜃𝜈 respectively. In the 𝛿 part, we show

that ̂𝛿𝑚 − 𝛿𝑚 as a process of 𝜃 can be approximated by a linear combination of the gradient of the
likelihood function, ̂ℒ𝛿, uniformly in𝑚 and 𝜃 in aneighborhoodof 𝜃0. This is established in lemma27.40

The 𝜃𝑧 part, established in lemma 32, shows that uniformly in a neighborhood of 𝜃𝜈
0, ̂𝜃𝑧(𝜃𝜈) − 𝜃𝑧

0(𝜃𝜈)
can approximated by a linear combination of the gradient of the objective function Ω̂which uses the
approximation of 𝛿. The 𝜃𝜈 part, shown in lemma 33, establishes that ̂𝜃𝜈 − 𝜃𝜈

0 can be approximated by a
linear combination of the gradient of the objective function and the previous approximations. Finally,
these results are collected in lemma 26.
In the second step, there are three challenges to applying a central limit theorem to

40This approximation involves the likelihood rather than the objective function Ω̂ because ̂𝛿𝑚(𝜃) is a function of
𝜃; for fixed 𝜃 the influence of the product level moments is negligible analagous to the Berry (1994) share inversion.
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�̂�−1/2
Λ ΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) ≃ −�̂�−1/2
Λ Λ( ̂𝜓 − 𝜓0).

First, the dimension of 𝛿 is growing with 𝑀, which is why we focus on a finite dimensional linear
combination of ̂𝜓. The second challenge is that 𝛿 acts as a product quality parameter in the likelihood
and as a random variable inΠ (e.g., due to its dependence on 𝜉). Third, the number of consumers in the
micro sample, the number of consumers in the population, and the number of markets all diverge at
different rates. Moreover, the information contained in themicro sample is allowed to decrease in the
case of weakmicro identification.
We overcome these challenges by using amartingale difference central limit theorem. This allows

for the varying rates of the third challenge. However, �̂�−1/2
Λ ΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) itself is not the sum of
martingale differences due to endogeneity arising from the second challenge. We address this issue
by showing that the difference between �̂�−1/2

Λ ΛΩ−1
𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) and its analog replacing some objects

with their expectation conditional on either 𝒥 or ℬ—which is a sum of martingale differences—is
asymptotically negligible.
Lemma 35 uses lemma 49 to establish normality of themartingale difference sum analog. Lemma 36,

supported by lemmas 37 to 39, shows that the difference between �̂�−1/2
Λ ΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) and the
analog is asymptotically irrelevant.

F.2 Consistency
LetΘ𝜖 = {𝜃 ∈ Θ ∶ ‖𝜃 − 𝜃0‖ ≥ 𝜖}.

Lemma 9. ̂𝜃
𝑝

→ 𝜃0

Proof. For consistency, we only need to take a fixed 𝜖 > 0. Then,

min
𝜃∈Θ𝜖

min
𝛿∈Δ

Ω̂∗(𝜃, 𝛿) ⪰ min
𝜃∈Θ𝜖

min
𝛿∈Δ

ℛ̂(𝜃, 𝛿) ⪰

𝑁𝜒𝜆2 + 𝑀 ≻ 𝑀√�̄�𝜆 + 1 ⪰ Ω̂∗{𝜃0, ̂𝛿mac(𝜃0)} ⪰ min
𝛿∈Δ

Ω̂∗(𝜃0, 𝛿), (37)

where the rate inequalities follow from lemmas 10 and 18. Hence, with probability approaching one,
theminimizer of Ω̂∗, and hence theminimizer of Ω̂, will not be an element of Θ𝜖 × Δ.

F.2.1 Showing min𝛿∈Δ Ω̂∗(𝜃0, 𝛿) ⪯ Ω̂∗{𝜃0, ̂𝛿mac(𝜃0)} ⪯ 𝑀
√

�̄�𝜆 + 1. Let 𝑎𝑖𝑗𝑚(𝜓𝑚) =
log𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜓𝑚) − log𝜋𝑗𝑚(𝜓𝑚) and let additional subscripts denote partial derivatives.

Lemma 10. Ω̂∗{𝜃0, ̂𝛿mac(𝜃0)} ⪯ 𝜆𝑀
√

�̄� + 1.

Proof. Follows from lemmas 11 and 12 and the fact that ̂ℒmac*{𝜃0, ̂𝛿mac(𝜃0)} = 0 by construction.

Lemma 11. ̂ℒmic{𝜃0, ̂𝛿mac(𝜃0)} ⪯ 𝜆𝑀
√

�̄�.

Proof. The left hand side is∑𝑀
𝑚=1 ∑𝑁𝑚

𝑖=1 𝐷𝑖𝑚 ∑𝐽𝑚
𝑗=0 𝑌𝑖𝑗𝑚{𝑎𝑖𝑗𝑚(𝜓0𝑚)−𝑎𝑖𝑗𝑚(𝜓𝑚)}.Use themeanvalue
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theorem to obtain

− ∑
𝑚𝑖𝑗

𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎⊺
𝛿𝑖𝑗𝑚(𝜓0𝑚)( ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚)

− 1
2

∑
𝑚𝑖𝑗

( ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚)⊺𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝛿𝛿𝑖𝑗𝑚(𝜃0, 𝛿∗
𝑚)( ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚),

The square of the first order term is by the Schwarz inequality bounded above by

− ∑
𝑚

𝑁−1
𝑚 ‖∑

𝑖𝑗
𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝛿𝑖𝑗𝑚(𝜓0𝑚)‖2 ∑

𝑚
𝑁𝑚‖ ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚‖2 ⪯ 𝑀�̄�𝜆2𝑀 = 𝑀2�̄�𝜆2,

by lemmas 14 and 16.
Now the second order term. It is bounded above by a half times the square root of

∑
𝑚

𝑁2
𝑚‖ ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚‖4 ∑

𝑚
∥𝑁−1

𝑚 ∑
𝑖𝑗

𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝛿𝛿𝑖𝑗𝑚(𝜃0, 𝛿∗
𝑚)∥

2
. (38)

By lemmas 14 and 17, the right hand side in (38) is⪯ 𝑀 × 𝜆2𝑀�̄� = 𝜆2𝑀2�̄�.

Lemma 12. Π{ ̂𝛿mac(𝜃0)} ⪯ 1.

Proof. Wehave

2Π{ ̂𝛿mac(𝜃0)} = { ̂𝛿mac(𝜃0)−𝛿0𝑚}⊺𝒦𝒦⊺{ ̂𝛿mac(𝜃0)−𝛿0𝑚}+2{ ̂𝛿mac(𝜃0)−𝛿0𝑚}⊺𝒦𝒦⊺𝜉+𝜉⊺𝒦𝒦⊺𝜉 ⪯ 1,

by lemmas 13 and 15.

Lemma 13. Π(𝛿0𝑚) ⪯ 1.

Proof. Follows from the orthogonality of 𝐵, 𝜉 and the definition of 𝒦.

Lemma 14. For 𝑡 = 1, 2,∑𝑀
𝑚=1 𝑁 𝑡

𝑚‖ ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚‖2𝑡 ⪯ 𝑀.

Proof. We show the result for 𝑡 = 1, where the result for 𝑡 = 2 is similar. From lemma 15, it follows that

𝑀
∑
𝑚=1

𝑁𝑚‖ ̂𝛿mac𝑚 (𝜃0) − 𝛿0𝑚‖2 ≃
𝑀

∑
𝑚=1

𝑁𝑚∥(𝜕𝛿⊺
𝑚

𝜋𝑚(𝜓0𝑚))
−1

{𝑠𝑚 − 𝜋𝑚(𝜓0𝑚)}∥
2
.

Now take the expectation of the right hand side conditional on𝒥 to obtain

𝑀
∑
𝑚=1

tr{(𝜕𝛿⊺
𝑚

𝜋𝑚(𝜓0𝑚))
−1

{Π∗
𝑚(𝜓0𝑚) − 𝜋𝑚(𝜓0𝑚)𝜋⊺

𝑚(𝜓0𝑚)}(𝜕𝛿⊺
𝑚

𝜋𝑚(𝜓0𝑚))
−1

},
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whereΠ∗
𝑚 = diag(𝜋𝑚). Now take its expectation and use lemma 48 and assumption C to conclude that

a sufficient condition is that

max
𝑚

𝔼 max
𝑗=1,…,𝐽𝑚

exp(5|𝜉𝑗𝑚|) ≤ max
𝑚

𝐽𝑚𝔼 exp(5|𝜉𝑗𝑚|) < ∞,

which is implied by assumptions C andD and lemma 52.

Lemma 15.

max
𝑚=1,…,𝑀

√𝑁𝑚 sup
𝜃∈Θ

∥ ̂𝛿mac𝑚 (𝜃) − 𝛿mac0𝑚 (𝜃) − (𝜕𝛿⊺
𝑚

𝜋𝑚{𝜃, 𝛿mac0𝑚 (𝜃)})
−1

(𝑠𝑚 − 𝜋𝑚(𝜓0𝑚))∥ ≺ 1.

Proof. This is an application of lemma 53.

Lemma 16. ∑𝑀
𝑚=1 𝑁−1

𝑚 ∥∑𝑖𝑗 𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝛿𝑖𝑗𝑚(𝜓0𝑚)∥2 ⪯ 𝑀�̄�𝜆2.

Proof. Note that the inner summand hasmean zero conditional on𝒥. Take the expectation of the left
hand side conditional on 𝒥 to obtain ∑𝑚𝑗 𝜒𝑚𝔼(𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜓0𝑚)‖𝑎𝛿𝑖𝑗𝑚(𝜓0𝑚)‖2 ∣ 𝒥𝑚). Expand the norm
around 𝜃𝑧

0 = 0 and apply lemma 47.

Lemma 17. ∑𝑀
𝑚=1 sup𝛿𝑚

∥𝑁−1
𝑚 ∑𝑖𝑗 𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝛿𝛿𝑖𝑗𝑚(𝜃0, 𝛿𝑚)∥2 ⪯ 𝑀�̄�𝜆2.

Proof. The left hand side is bounded above by

𝑀
∑
𝑚=1

( 1
𝑁𝑚

∑
𝑖𝑗

𝐷𝑖𝑚𝑌𝑖𝑗𝑚 sup
𝛿𝑚

‖𝑎𝛿𝛿𝑖𝑗𝑚(𝜃0, 𝛿𝑚)‖)
2

⪯
𝑀

∑
𝑚=1

𝜒𝑚𝜆2 = 𝑀�̄�𝜆2,

by applying lemma 47, taking an expectation, and expanding 𝑎𝛿𝛿𝑖𝑗𝑚(𝜃0, 𝛿𝑚) around 𝜃𝑧
0 = 0.

F.2.2 Showingmin𝜃∈Θ𝜖
min𝛿∈Δ Ω̂∗(𝜃, 𝛿) ⪰ min𝜃∈Θ𝜖

min𝛿∈Δ ℛ̂(𝜃, 𝛿) ⪰ 𝑁𝜒𝜆2 + 𝑀.

Lemma 18. min𝜃∈Θ𝜖,𝛿∈Δ Ω̂∗(𝜃, 𝛿) ⪰ (𝑁𝜒𝜆2 + 𝑀)𝜖2

Proof. Follow from lemmas 19 and 20.

Lemma 19. For all (possibly decreasing) 𝜖 > 0,min𝜃∈Θ𝜖,𝛿∈Δ ℛ̂(𝜃, 𝛿) ⪰ (𝑁𝜒𝜆2 + 𝑀)𝜖2.

Proof. By condition (f) of assumption F,min𝜃∈Θ𝜖
Π{𝛿mac0 (𝜃)} ⪰ 𝑀𝜖2. Further, by assumption G, for

some𝐶mic > 0, expandingℒmic around 𝜃0 and applying lemma 47 yields

min
𝜃∈Θ𝜖

min
𝛿∈Δ

ℒmic(𝜃, 𝛿) ⪰ 𝑁𝜒min
𝜃∈Θ𝜖

‖𝜃 − 𝜃0‖2
𝜆 = 𝑁𝜒 min

‖𝜃𝑧−𝜃𝑧
0‖≤𝜖

{‖𝜃𝑧 − 𝜃𝑧
0‖2(1 − 𝜆2) + 𝜆2𝜖2} ⪰ 𝑁𝜒𝜆2𝜖2,

as asserted.

Lemma 20. max𝜃∈Θ𝜖,𝛿∈Δ∣{Ω̂∗(𝜃, 𝛿) − ℛ̂(𝜃, 𝛿)} / ℛ̂(𝜃, 𝛿)∣ ≺ 1.
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Proof. Follows from lemmas 21 and 22.

Lemma 21. sup𝜃∈Θ𝜖
sup𝛿∈Δ∣{ ̂ℒmic(𝜃, 𝛿) − ℒmic(𝜃, 𝛿)} / ℛ̂(𝜃, 𝛿)∣ ≺ 1.

Proof. Combine lemmas 23 and 24.

Lemma 22. max𝜃∈Θ𝜖,𝛿∈Δ∣[Π(𝛿) − Π{𝛿mac0 (𝜃)}] / ℛ̂(𝜃, 𝛿)∣ ≺ 1.

Proof. Wehave

2|Π(𝛿) − Π{𝛿mac0 (𝜃)}| ≤ 2‖𝒦⊺{𝛿 − 𝛿mac0 (𝜃)}‖‖𝒦⊺𝛿mac0 (𝜃)‖ + ‖𝒦⊺{𝛿 − 𝛿mac0 (𝜃)}‖2,

uniformly in 𝜃, 𝛿. Now, sup𝜃∈Θ‖𝒦⊺𝛿mac0 (𝜃)‖ ≤ sup𝜃∈Θ‖𝛿mac0 (𝜃)‖ ⪯
√

𝑀. Further,

max
𝜃∈Θ𝜖,𝛿∈Δ

‖𝒦⊺{𝛿 − 𝛿mac0 (𝜃)}‖2

ℛ̂(𝜃, 𝛿)
≤

max
𝜃∈Θ𝜖,𝛿∈Δ

‖𝒦⊺{𝛿 − ̂𝛿mac(𝜃)}‖2

ℛ̂(𝜃, 𝛿)
+ max

𝜃∈Θ𝜖,𝛿∈Δ

‖𝒦⊺{ ̂𝛿mac(𝜃) − 𝛿mac0 (𝜃)}‖2

ℛ̂(𝜃, 𝛿)
≺ 1, (39)

by lemma 15 and the definition of ℛ̂.

Lemma 23.

sup
𝜃𝑧≠0

sup
𝛿

[ ̂ℒmic(𝜃, 𝛿) − ̂ℒmic{𝜃, 𝛿mac0 (𝜃)} − ℒmic(𝜃, 𝛿) + ℒmic{𝜃, 𝛿mac0 (𝜃)}]2

ℛ̂2(𝜃, 𝛿)
≺ 1.

Proof. Let ̃𝑎𝑖𝑚(𝜃, 𝛿𝑚) = ∑𝐽𝑚
𝑗=0[𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝑖𝑗𝑚(𝜃, 𝛿𝑚) − 𝔼{𝐷𝑖𝑚𝑌𝑖𝑗𝑚𝑎𝑖𝑗𝑚(𝜃, 𝛿𝑚) | 𝒥}]. We have by the

mean value theorem41 that

̂ℒmic(𝜃, 𝛿) − ̂ℒmic{𝜃, 𝛿mac0 (𝜃)} − ℒmic(𝜃, 𝛿) + ℒmic{𝜃, 𝛿mac0 (𝜃)}

= ∑
𝑚𝑖

̃𝑎⊺
𝛿𝑖𝑚{𝜃, 𝛿mac0𝑚 (𝜃)}{𝛿𝑚 − 𝛿mac0𝑚 (𝜃)} + 1

2
∑
𝑚𝑖

{𝛿𝑚 − 𝛿mac0𝑚 (𝜃)}⊺ ̃𝑎𝛿𝛿𝑖𝑚(𝜃, 𝛿∗
𝑚){𝛿𝑚 − 𝛿mac0𝑚 (𝜃)}. (40)

Square each right hand side term in (40) and apply the Schwarz inequality. For the first order term, we
get an upper bound equal to

∑
𝑚

1
𝑁𝑚𝐶mac

𝑚
∥∑

𝑖
̃𝑎𝛿𝑖𝑚{𝜃, 𝛿mac0𝑚 (𝜃)}∥

2
∑
𝑚

𝑁𝑚𝐶mac
𝑚 ‖𝛿𝑚 − 𝛿mac0𝑚 (𝜃)‖2. (41)

Now,
41If one applies themean value theorem to a vector-valued function then the ‘mean value’ can be different for

each element of the vector. That distinction is immaterial here, so we ignore it in our notation.
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sup
𝜃∈Θ𝜖,𝛿∈Δ

∑
𝑚

𝑁𝑚𝐶mac
𝑚

‖𝛿𝑚 − 𝛿mac0𝑚 (𝜃)‖2

ℛ̂(𝜃, 𝛿)
≤

sup
𝜃∈Θ𝜖,𝛿∈Δ

∑
𝑚

𝑁𝑚𝐶mac
𝑚 (‖𝛿𝑚 − ̂𝛿mac𝑚 (𝜃)‖2

ℛ̂(𝜃, 𝛿)
+ ‖ ̂𝛿mac𝑚 (𝜃) − 𝛿mac0𝑚 (𝜃)‖2

ℛ̂(𝜃, 𝛿)
) ⪯ 1. (42)

Further, by lemma 47,

∑
𝑚

1
𝑁𝑚𝐶mac

𝑚
sup

𝜃∈Θ∶𝜃𝑧≠0
𝔼(∥∑

𝑖

̃𝑎𝛿𝑖𝑚{𝜃, 𝛿mac0𝑚 (𝜃)}
‖𝜃𝑧‖

∥
2

∣ 𝒥) ≤ 𝐶∗ ∑
𝑚

𝜒𝑚
𝐶mac

𝑚
,

for some 𝐶∗ < ∞. Take the expectation conditional on the 𝜒𝑚’s and divide by ℛ̂(𝜃, 𝛿) to obtain for
some constant𝐶∗ < ∞ an upper bound equal to

sup
𝜃∈Θ𝜖,𝛿∈Δ

𝐶∗ ∑𝑚 𝜒𝑚‖𝜃𝑧‖2

ℛ̂(𝜃, 𝛿)
= sup

𝜃∈Θ𝜖,𝛿∈Δ

𝐶∗𝑀�̄�‖𝜃𝑧‖2

ℛ̂(𝜃, 𝛿)
≺ sup

𝜃∈Θ𝜖,𝛿∈Δ

𝑁𝜒‖𝜃 − 𝜃0‖2
𝜆

ℛ̂(𝜃, 𝛿)
⪯ 1. (43)

Now,

sup
𝜃∈Θ

∣∑
𝑚

1
𝑁𝑚𝐶mac

𝑚
(∥∑

𝑖
̃𝑎𝛿𝑖𝑚{𝜃, 𝛿mac0𝑚 (𝜃)}∥

2
− 𝔼(∥∑

𝑖
̃𝑎𝛿𝑖𝑚{𝜃, 𝛿mac0𝑚 (𝜃)}∥

2
∣ 𝒥))∣. (44)

which can be expressed as

max
𝜃∈Θ

∣∑
𝑚

𝐴𝑚(𝜃)∣ ≤ max
𝑡=1,…,𝑇

max
𝜃∈Θ𝑡

∣∑
𝑚

{𝐴𝑚(𝜃) − 𝐴𝑚(𝜃𝑡)}∣ + max
𝑡=1,…,𝑇

∣∑
𝑚

𝐴𝑚(𝜃𝑡)∣,

for a partition {Θ𝑡} of Θ consisting of a given 𝑇 sets for which distances in eachΘ𝑡 areminimized and
where 𝜃𝑡 is an arbitrary point of Θ𝑡. Now for any 𝑐 > 0,

ℙ( max
𝑡=1,…,𝑇

∣∑
𝑚

𝐴𝑚(𝜃𝑡)∣ ≥ 𝑐𝑀) ≤
𝑇

∑
𝑡=1

∑𝑚 𝔼(𝐴2
𝑚(𝜃𝑡) | 𝒥)

𝑐2𝑀2 ≺ 1. (45)

That leaves us with

max
𝑡=1,…,𝑇

max
𝜃∈Θ𝑡

∣∑
𝑚

{𝐴𝑚(𝜃) − 𝐴𝑚(𝜃𝑡)}∣ ≤ 𝐶𝑑𝑇 −1/𝑑 max
𝜃∈Θ

∑
𝑚

‖𝐴𝜃𝑚(𝜃)‖ ≺ 𝑀, (46)

where𝐶𝑑 is a constant only depending on 𝑑. From (45) and (46) it follows that (44) is≺ 𝑀 ≤ ℛ̂(𝜃, 𝛿)
for all 𝜃, 𝛿. Combining the rate for (44) with (42) and the rate in (43) establishes that (41) divided by
ℛ̂2(𝜃, 𝛿) vanishes, uniformly in 𝜃 ∈ Θ𝜖, 𝛿 ∈ Δ.
The second order term in (40) is similar but easier.

Lemma 24.

sup
𝜃∈Θ𝜖,𝛿∈Δ

∣
̂ℒmic{𝜃, 𝛿mac0 (𝜃)} − ℒmic{𝜃, 𝛿mac0 (𝜃)}

ℛ̂(𝜃, 𝛿)
∣ ⪯ 1.
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Proof. This is a simple albeit messy application of lemma 51, noting that 𝑎𝜓𝜈𝑖𝑗𝑚(0, 𝜓𝜈
𝑚) = 0 for all𝜓𝜈

𝑚

and that themoment restrictions are satisfied by lemma 47.

F.2.3 Lower bound on rate.

Lemma 25. ̂𝜃 − 𝜃0 ⪯ 1/
√

𝑀

Proof. The proof is identical to the proof of lemma 9, but needs one additional step. Indeed, if one
allows 𝜖 to vary then the rate inequality in (37) becomes (𝑁𝜒𝜆2 + 𝑀)𝜖2 ≻ 𝑀

√
�̄�𝜆 + 1, for ‘signal’ to

dominate ‘noise.’ Hence, the convergence rate of ̂𝜃 is 4√𝑀2�̄�𝜆2 + 1 / √𝑁𝜒𝜆2 + 𝑀. First consider the
possibility that𝑁𝜒𝜆2 ⪯ 𝑀. This implies that

𝑀√�̄�𝜆 ⪯ 𝑀√ �̄�
𝑁𝜒/𝑀

= 𝑀√
∑𝑚 𝜒𝑚

∑𝑚 𝑁𝑚𝜒𝑚
≃ 𝑀√ 𝔼𝜒𝑚

𝔼(𝑁𝑚𝜒𝑚)
⪯ 1,

by assumption D. Finally, if 𝑁𝜒𝜆2 ≻ 𝑀 then

𝑀
√

�̄�𝜆
𝑁𝜒𝜆2 ≺ 𝑀

√
�̄�

𝑁𝜒√𝑀/(𝑁𝜒)
= √𝑀�̄�

𝑁𝜒
≃ √ 𝔼𝜒𝑚

𝔼(𝑁𝑚𝜒𝑚)
⪯ 1

𝑀
.

F.3 Step one of asymptotic normality

Lemma 26. For any fixed vector 𝑣with ‖𝑣‖ = 1, 𝑣⊺( ̂𝜓 − 𝜓0) ≃ −𝑣⊺Ω−1
𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0).

Proof. Follows from lemmas 27, 32 and 33.

F.3.1 ̂𝛿 as a process indexed by 𝜃. Let ̂𝛿ℒ
𝑚(𝜃) denote theminimizer of ̂ℒ𝑚(𝜃, 𝛿)with respect to 𝛿 and

let ̂𝛿Ω = ̂𝛿.

Lemma 27.

max
𝑚=1,…,𝑀

sup
𝜃∈Θ∗

𝜖𝑀

𝑁𝑚∥ ̂𝛿𝑚(𝜃) − 𝛿0𝑚(𝜃) + ℒ−1
𝑚𝛿𝛿{𝜃, 𝛿0𝑚(𝜃)} ̂ℒ𝑚𝛿{𝜃, 𝛿0𝑚(𝜃)}∥ ⪯ 𝑀.

Proof. By lemma 30 and the triangle inequality, it suffices to show that

max
𝑚=1,…,𝑀

sup
𝜃∈Θ∗

𝜖𝑀

𝑁𝑚∥ ̂𝛿𝑚(𝜃) − ̂𝛿ℒ
𝑚(𝜃)∥ ⪯ 𝑀.

First, since Ω̂𝛿{𝜃, ̂𝛿(𝜃)} = 0 for all 𝜃 by definition, we have ̂ℒ𝑚𝛿{𝜃, ̂𝛿𝑚(𝜃)} = −𝒦𝑚𝒦⊺ ̂𝛿(𝜃) ⪯
√

𝑀,
uniformly in𝑚, 𝜃 by lemmas 29 and 31. Thus,
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√
𝑀 ⪰ max

𝑚=1,…,𝑀
sup

𝜃∈Θ∗
𝜖𝑀

∥ ̂ℒ𝑚𝛿{𝜃, ̂𝛿𝑚(𝜃)}∥ =

max
𝑚=1,…,𝑀

sup
𝜃∈Θ∗

𝜖𝑀

∥∑
𝑗

𝑁−1
𝑚

̂ℒ𝑚𝛿𝛿𝑗
{𝜃, ̃𝛿𝑚;𝑗(𝜃)}𝑁𝑚{ ̂𝛿𝑗𝑚(𝜃) − ̂𝛿ℒ

𝑗𝑚(𝜃)}∥,

where ̃𝛿𝑚;𝑗(𝜃) lies between ̂𝛿𝑚(𝜃) and ̂𝛿ℒ
𝑚(𝜃)with only the 𝑗–th element different. The stated result then

follows fromthe fact that (conditionalon𝒥) ̂ℒ𝑚𝛿𝛿/𝑁𝑚 is an i.i.d. average that isboundedlydifferentiable
in 𝛿𝑚, thatℒ𝑚𝛿𝛿/𝑁𝑚 has eigenvalues bounded away from zero by lemma 28, and that the function
ℒ𝑚𝛿𝛿/𝑁𝑚 only depends on 𝐽𝑚 ≤ ̄𝐽 a.s. by assumption D.

Lemma 28. For some sequence {𝜖𝑀} for which 1/
√

𝑀 ≺ 𝜖𝑀 ≺ 1 andΘ∗
𝜖 = {𝜃 ∈ Θ ∶ ‖𝜃 − 𝜃0‖ ≤ 𝜖},

ℙ(∃𝑚 = 1, …, 𝑀 ∶ min
𝜃∈Θ∗

𝜖𝑀

𝜆min[ℒ𝛿𝛿𝑚{𝜃, 𝛿0𝑚(𝜃)}] ≤ 𝜆min{ℒ𝛿𝛿𝑚(𝜓0𝑚)}/2) ≺ 1.

Proof. Let 𝑎𝑚(𝜃) = 𝜆min[ℒ𝛿𝛿𝑚{𝜃, 𝛿0𝑚(𝜃)}]/𝑁𝑚 and note that∑𝐽𝑚
𝑗=1‖ℒ𝛿𝛿𝜃𝑗𝑚‖ is bounded by lemma 47.

Thus, noting that 𝑎𝑚(𝜃0) ≥ 𝜆min{ℒmac
𝑚 (𝜓0𝑚)}, we have for some fixed𝐶∗ ≤ ∞,

ℙ(∃𝑚 = 1, …, 𝑀 ∶ min
𝜃∈Θ∗

𝜖𝑀

𝑎𝑚(𝜃) ≤ 𝑎𝑚(𝜃0)/2) ≤
𝑀

∑
𝑚=1

ℙ( min
𝜃∈Θ∗

𝜖𝑀

2𝑎𝑚(𝜃) ≤ 𝑎𝑚(𝜃0))

≤
𝑀

∑
𝑚=1

ℙ( min
𝜃∈Θ∗

𝜖𝑀

2{𝑎𝑚(𝜃)−𝑎𝑚(𝜃0)} ≤ −𝑎𝑚(𝜃0)) ≤
𝑀

∑
𝑚=1

ℙ(𝐶∗𝜖𝑀 ≥ 𝑎𝑚(𝜃0)) ≤
𝑀

∑
𝑚=1

𝐶∗𝑝𝜖𝑝
𝑀𝔼𝑎−𝑝

𝑚 (𝜃0),

for any𝑝 > 0 forwhich the expectationexists,where the last inequality follows fromtheMarkov inequal-
ity. Choose 2 < 𝑝 < 𝑝𝜉/4. It then suffices to show that 𝔼𝑎−𝑝

𝑚 (𝜃0) < ∞. Now, by (52) and assumption C,
for some fixed𝐶2 < ∞,

𝔼𝑎−𝑝
𝑚 (𝜃0) ≤ 𝔼( max

𝑗=1,…,𝐽𝑚
∫ s𝑗𝑚(𝑧, 𝜈; 𝜓0𝑚)s0𝑚(𝑧, 𝜈; 𝜓0𝑚) d𝐹(𝜈) d𝐺(𝑧))

−2𝑝

≤

𝐶2𝔼( max
𝑗=1,…,𝐽𝑚

{∑𝐽𝑚
𝑡=0 exp(𝛿𝑡𝑚)}2

exp(𝛿𝑗𝑚)
)

−2𝑝

≤ 𝐶2𝔼
𝐽𝑚

∑
𝑗,𝑡=0

{exp(4𝑝𝛿𝑡𝑚 − 2𝑝𝛿𝑗𝑚)} ≤ 𝐶2
2 𝔼 exp(4𝑝|𝛿𝑡𝑚|)𝔼 exp(2𝑝|𝛿𝑗𝑚|) < ∞,

by assumption C.

Lemma 29. Let 𝜖𝑀 be as in lemma 28. For any 𝜖∗
𝑀 ⪯ 𝜖𝑀, sup𝜃∈Θ∗

𝜖∗
𝑀

‖𝒦⊺ ̂𝛿ℒ(𝜃)‖ ⪯ 1 +
√

𝑀𝜀∗
𝑀.

Proof. By the triangle inequality,

‖𝒦⊺ ̂𝛿ℒ(𝜃)‖ ≤ ‖𝒦⊺{ ̂𝛿ℒ(𝜃) − 𝛿0(𝜃)}‖ + ‖𝒦⊺{𝛿0(𝜃) − 𝛿0(𝜃0)}‖ + ‖𝒦⊺𝜉‖. (47)
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The first right hand side term in (47) is ≺ 1 by lemma 30 and the last term is ⪯ 1 since 𝒦𝒦⊺ is an
orthogonal projection matrix of the form𝐵 × something × 𝐵⊺. Finally, note that the middle term
squared is bounded above by∑𝑀

𝑚=1‖𝜕𝜃𝛿⊺
0𝑚𝜕𝜃⊺𝛿0𝑚‖ ‖𝜃 − 𝜃0‖2.

Lemma 30. Let 𝜖𝑀 be as in lemma 28. Then

max
𝑚=1,…,𝑀

sup
𝜃∈Θ∗

𝜖𝑀

𝑁𝑚∥ ̂𝛿ℒ
𝑚(𝜃) − 𝛿0𝑚(𝜃) + ℒ−1

𝑚𝛿𝛿{𝜃, 𝛿0𝑚(𝜃)} ̂ℒ𝑚𝛿{𝜃, 𝛿0𝑚(𝜃)}∥ ⪯ 𝑀.

Proof. We first obtain results for fixed𝑚 and use lemma 53with ̂𝑓 = ̂ℒ𝑚/𝑁𝑚 and 𝑓 = ℒ𝑚/𝑁𝑚. Since
̂ℒ𝑚 is convex in 𝛿𝑚 onΘ∗

𝜖𝑀
with probability approaching one, (i) is satisfied. Because ̂ℒ𝑚/𝑁𝑚 is an i.i.d.

mean of convex differentiable functions, the remaining requirement of lemma 53 are straightforward
to verify for 𝜌𝑛 = 𝜌2𝑛 = 𝑁−1/2

𝑚 and 𝜌3𝑛 = 1. Finally, note that for any random sequence {𝐴𝑚} and
any 𝜀 > 0, ℙ(max𝑀

𝑚=1 𝐴𝑚 > 𝜀) ≤ ∑𝑀
𝑚=1 ℙ(𝐴𝑚 > 𝜀). Since there are only finitely different types of

markets (𝐽𝑚 ≤ ̄𝐽 by assumption D), uniformity of ℙ(𝐴𝑚 > 𝜀) over𝑚 can be obtained by a finite sum
over all possible values of 𝐽𝑚.

Lemma 31. ∀𝜃 ∈ Θ ∶ ‖𝒦⊺ ̂𝛿(𝜃)‖ ≤ ‖𝒦⊺ ̂𝛿ℒ(𝜃)‖.

Proof. Wehave

1
2

(‖𝒦⊺ ̂𝛿(𝜃)‖2 − ‖𝒦⊺ ̂𝛿ℒ(𝜃)‖2) = [Ω̂{𝜃, ̂𝛿(𝜃)} − Ω̂{𝜃, ̂𝛿ℒ(𝜃)}] + [ ̂ℒ{𝜃, ̂𝛿ℒ(𝜃)} − ̂ℒ{𝜃, ̂𝛿(𝜃)}] ≤ 0,

because ̂𝛿minimizes Ω̂ and ̂𝛿ℒ minimizes ̂ℒ.

F.3.2 ̂𝜃𝑧 as a process indexed by 𝜃𝜈. Define ̂𝜃𝑧(𝜃𝜈) = argmin𝜃𝑧 Ω̂{𝜃𝑧, 𝜃𝜈, ̂𝛿Ω(𝜃𝑧, 𝜃𝜈)}, let 𝜌𝑧 =
√

𝑁𝜒 + 𝑀, 𝜌𝜈 = √𝑁𝜒𝜆2 + 𝑀, and for 𝑎, 𝑏 ∈ {𝜃𝑧, 𝜃𝜈} define 𝒬𝑎𝑏 = Ω𝑎𝑏 − Ω𝑎𝛿Ω−1
𝛿𝛿 Ω𝛿𝑏 and ̂q𝑎 =

Ω̂𝑎 − Ω𝑎𝛿Ω−1
𝛿𝛿 Ω̂𝛿.

Lemma 32.
sup

𝜃𝜈∈{𝜃𝜈∶∃𝜃𝑧∶(𝜃𝑧,𝜃𝜈)∈Θ∗
𝜖𝑀

}
𝜌2

𝑧 ∥ ̂𝜃𝑧(𝜃𝜈) − 𝜃𝑧
0(𝜃𝜈) + 𝒬−1

𝑧𝑧 (𝜃𝜈) ̂q𝑧(𝜃𝜈)∥ ⪯ 1,

where𝒬𝑧𝑧(𝜃𝜈) = 𝒬𝑧𝑧[𝜃𝑧
0(𝜃𝜈), 𝜃𝜈, 𝛿Ω

0 {𝜃𝑧
0(𝜃𝜈), 𝜃𝜈}] and likewise for ̂q𝑧(𝜃𝜈).

Proof. The proof is similar to that of lemma 30 except that we need not establish uniformity in𝑚. So
we omit a proof and only note that𝒬𝑧𝑧 is theHessian of Ω{𝜃𝑧, 𝜃𝜈, 𝛿Ω

0 (𝜃𝑧, 𝜃𝜈)}with respect to 𝜃𝑧 because
𝜕𝜃⊺𝛿Ω

0 = −Ω−1
𝛿𝛿 Ω𝛿𝜃 by the implicit function theorem and that ̂q𝑧 is the gradient of Ω̂{𝜃𝑧, 𝜃𝜈, 𝛿Ω

0 (𝜃𝑧, 𝜃𝜈)}
with respect to 𝜃𝑧.

F.3.3 Approximation for ̂𝜃𝜈 − 𝜃𝜈
0. Let
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𝒵 = −Ω−1
𝜓𝜓 =

⎡
⎢⎢
⎣

𝒵𝑧𝑧 𝒵𝑧𝜈 𝒵𝑧𝛿

𝒵𝜈𝑧 𝒵𝜈𝜈 𝒵𝜈𝛿

𝒵𝛿𝑧 𝒵𝛿𝜈 𝒵𝛿𝛿

⎤
⎥⎥
⎦

, (48)

with
𝒵𝑧𝜓 = −(𝒬𝑧𝑧 − 𝒬𝑧𝜈𝒬−1

𝜈𝜈 𝒬𝜈𝑧)−1 [𝐼 −𝒬𝑧𝜈𝒬−1
𝜈𝜈 −(Ω𝑧𝛿 − 𝒬𝑧𝜈𝒬−1

𝜈𝜈 Ω𝜈𝛿)Ω−1
𝛿𝛿 ] ,

𝒵𝜈𝜓 = −(𝒬𝜈𝜈 − 𝒬𝜈𝑧𝒬−1
𝑧𝑧 𝒬𝑧𝜈)−1 [−𝒬𝜈𝑧𝒬−1

𝑧𝑧 𝐼 −(Ω𝜈𝛿 − 𝒬𝜈𝑧𝒬−1
𝑧𝑧 Ω𝑧𝛿)Ω−1

𝛿𝛿 ] ,

𝒵𝛿𝜓 = −Ω−1
𝛿𝛿 (Ω𝛿𝜃𝒵𝜃𝜓 + [0 0 𝐼]),

where everything is evaluated at 𝜓0. Let further 𝜌𝑧 =
√

𝑁𝜒 + 𝑀, 𝜌𝜈 = √𝑁𝜒𝜆2 + 𝑀, 𝜌𝑚 =
min(𝜌𝜈, √𝑁𝑚), and let �̃� = P𝜓𝒵with

P𝜓 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐼𝑑𝑧
/𝜌𝑧 0 0 ⋯ 0
0 𝐼𝑑𝜈

/𝜌𝜈 ⋱ ⋱ 0
⋮ ⋱ 𝐼𝐽1

/𝜌1 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ ⋯ 0 𝐼𝐽𝑀

/𝜌𝑀

⎤
⎥
⎥
⎥
⎥
⎥
⎦

,   P𝜃 = [
𝐼𝑑𝑧

/𝜌𝑧 0
0 𝐼𝑑𝜈

/𝜌𝜈
] .

Write ̃𝒬𝜃𝜃 = P𝜃𝒬𝜃𝜃 and let similar symbols be analogously defined.

Lemma 33. 𝜌𝜈 ⪰
√

𝑀 by lemma 25 and ̂𝜃𝜈 − 𝜃𝜈
0 − 𝒵𝜈𝜓Ω̂𝜓(𝜓0) ≃ 𝜌−2

𝜈 .

Proof. We first show that

̂𝜃𝜈 − 𝜃𝜈
0 + (𝒬𝜈𝜈 − 𝒬𝜈𝑧𝒬−1

𝑧𝑧 𝒬𝑧𝜈)−1(Ω̂𝜈 + 𝒬𝜈𝑧{ ̂𝜃𝑧(𝜃𝜈
0) − 𝜃𝑧

0(𝜃𝜈
0)} + Ω𝜈𝛿{ ̂𝛿Ω(𝜃0) − 𝛿Ω

0 (𝜃0)}) ≃ 𝜌−2
𝜈 , (49)

where allΩ’s and𝒬’s are evaluated at the truth. The proof of (49) is analogous to that of lemmas 30
and 32 except that there is no uniformity issue here. Since this proof is simpler we omit it, except to
note that it is based on the expansion

0 = Ω̂𝜈[ ̂𝜃𝜈, ̂𝜃𝑧( ̂𝜃𝜈), ̂𝛿Ω{ ̂𝜃𝑧( ̂𝜃𝜈), ̂𝜃𝜈}] ≃

Ω̂𝜈 + (Ω𝜈𝜈 + Ω𝜈𝑧𝜕𝜃𝜈⊺𝜃𝑧
0(𝜃𝜈

0) + Ω𝜈𝛿{𝜕𝜃𝜈⊺ 𝛿Ω
0 (𝜃0) + 𝜕𝜃𝑧⊺𝛿0(𝜃0)𝜕𝜃𝜈⊺𝜃𝑧

0(𝜃𝜈
0)}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒬𝜈𝜈−𝒬𝜈𝑧𝒬−1
𝑧𝑧𝒬𝑧𝜈

)( ̂𝜃𝜈 − 𝜃𝜈
0)

+ (Ω𝜈𝑧 + Ω𝜈𝛿𝜕𝜃𝑧⊺𝛿Ω
0 (𝜃0)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝒬𝜈𝑧

){ ̂𝜃𝑧(𝜃𝜈
0) − 𝜃𝑧

0(𝜃𝜈
0)} + Ω𝜈𝛿{ ̂𝛿Ω(𝜃0) − 𝛿Ω

0 (𝜃0)},

where all right hand sideΩ, Ω̂s are evaluated at the truth. Note that 𝜕𝜃⊺𝛿Ω
0 = −Ω−1

𝛿𝛿 Ω𝛿𝜃 and 𝜕𝜃𝜈⊺ 𝜃𝑧
0 =

−𝒬−1
𝑧𝑧 𝒬𝑧𝜈 by applying the implicit function theorem to the first order conditions that define 𝛿Ω

0 (𝜃) and
𝜃𝑧

0(𝜃𝜈). Rearrange to obtain (49). The lemma statement then follows from applying lemmas 27 and 32
and the deltamethod.
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F.4 Step two of asymptotic normality

Define𝒫 = 𝒫𝐵 − 𝒫𝒫𝐵𝑋 = 𝒦𝒦⊺ and �̄� = 𝒫𝐵 − 𝒫𝒫𝐵�̄� = �̄��̄�⊺, where �̄� = 𝔼(𝑋 | ℬ),

̄𝒬𝜃𝜃 = 𝔼(ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃 | ℬ) + 𝔼(ℒ𝜃𝛿ℒ−1

𝛿𝛿 | ℬ)𝑃𝐵�̄��̄�⊺𝑃𝐵𝔼(ℒ−1
𝛿𝛿 ℒ𝛿𝜃 | ℬ),

let �̄� be defined as𝒵 but with the𝒬’s replaced with ̄𝒬’s and let ̄�̄� be as �̄�withΩ𝜃𝛿Ω−1
𝛿𝛿 replaced with

𝔼(ℒ𝜃𝛿ℒ−1
𝛿𝛿 | ℬ). Then define

𝐴 = �̄�⊺Λ⊺�̄�−1/2
Λ , 𝐶 = 𝐵+�̄��̄�⊺ ̄�̄�

⊺
𝜓𝛿Λ⊺�̄�−1/2

Λ , �̄�Λ = Λ{𝔼(�̄�ℒ𝜓𝜓�̄�⊺ | ℬ) + ̄�̄�𝜓𝛿�̄��̄�⊺ ̄�̄�
⊺
𝜓𝛿}Λ⊺.

Lemma 34. �̂�−1/2
Λ ΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0)
𝑑

→ 𝑁(0, 𝐼).

Proof. Follows from lemmas 35 and 36.

F.4.1 Normality.

Lemma 35. �̄�−1/2
Λ Λ(�̄� ̂ℒ𝜓 + ̄�̄�𝜓𝛿�̄��̄�⊺𝜉)

𝑑
→ 𝑁(0, 1).

Proof. Use lemma 49with𝐴 = �̄�⊺Λ⊺�̄�−1/2
Λ and𝐶 = 𝐵+�̄��̄�⊺ ̄�̄�

⊺
𝜓𝛿Λ⊺�̄�−1/2

Λ .

Lemma 36. �̂�−1/2
Λ ΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) − �̄�−1/2
Λ Λ(�̄� ̂ℒ𝜓 + ̄�̄�𝜓𝛿�̄��̄�⊺𝜉) ≺ 1.

Proof. Follows from lemmas 38, 39 and 43.

Lemma 37. �̄�−1/2
Λ Λ(𝒵 − �̄�) ̂ℒ𝜓 ≺ 1.

Proof. By lemma 40, part (e),

𝔼{‖�̄�−1/2
Λ Λ(𝒵 − �̄�) ̂ℒ𝜓‖2 ∣ 𝒥} = tr(�̄�−1

Λ Λ(𝒵 − �̄�)ℒ𝜓𝜓(𝒵 − �̄�)⊺Λ⊺) ≤

tr{�̄�−1
Λ Λ [

𝐼 0
−Ω−1

𝛿𝛿 Ω𝛿𝜃 0
] [

�̄�𝜃𝜓Ω𝜓𝜃 + 𝐼 0
0 0

] Ω−1
𝜓𝜓 [

�̄�𝜃𝜓Ω𝜓𝜃 + 𝐼 0
0 0

] [
𝐼 0

−Ω−1
𝛿𝛿 Ω𝛿𝜃 0

]
⊺

Λ⊺} ≺ 1.

Lemma 38. �̄�−1/2
Λ Λ(𝒵𝜓𝛿𝒦𝒦⊺ − ̄�̄�𝜓𝛿�̄��̄�⊺)𝜉 ≺ 1.

Proof. There are three components: (a) �̄�−1/2
Λ Λ(𝒵𝜓𝛿 − �̄�𝜓𝛿)𝒦𝒦⊺𝜉 ≺ 1; (b) �̄�−1/2

Λ Λ(�̄�𝜓𝛿 −
̄�̄�𝜓𝛿)𝒦𝒦⊺𝜉 ≺ 1; (c) �̄�−1/2

Λ Λ ̄�̄�𝜓𝛿(𝒦𝒦⊺ −�̄��̄�⊺)𝜉 ≺ 1. Weomit showing (a) since theproof is similar
to that of lemma 37. For (b), note that𝒦𝒦⊺ = 𝑃𝐵𝒦𝒦⊺𝑃𝐵, �̄�

−1/2
Λ ⪯ 1/

√
𝑀,Λ(�̄�𝜓𝛿 − ̄�̄�𝜓𝛿)𝐵 ⪯

√
𝑀

(by lemma 43),𝐵+𝒦𝒦⊺𝐵+⊺ ≤ (𝐵⊺𝐵)−1 ≃ 1/𝑀, and𝐵⊺𝜉 ≃
√

𝑀, such that the left hand side in re-
sult (b) is⪯ 𝑀−1/2𝑀1/2𝑀−1𝑀1/2 ≃ 𝑀−1/2 ≺ 1. The arguments for (c) are similar except that now
we use
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𝐵+(𝒦𝒦⊺ − �̄��̄�⊺)(𝐵+)⊺ =

(𝐵⊺𝐵)−1(𝐵⊺�̄�{�̄�⊺𝐵(𝐵⊺𝐵)−1𝐵⊺�̄�}−1�̄�⊺𝐵−𝐵⊺𝑋{𝑋⊺𝐵(𝐵⊺𝐵)−1𝐵⊺𝑋}−1𝑋⊺𝐵)(𝐵⊺𝐵)−1 ⪯ 𝑀−3/2.

Lemma 39. �̂�−1/2
Λ ΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) − �̄�−1/2
Λ ΛΛΩ−1

𝜓𝜓(𝜓0)Ω̂𝜓(𝜓0) ≺ 1.

Proof. Follows from lemma 44.

F.4.2 Removing Endogeneity from𝒬.

Lemma40. (a) �̄�𝜃𝜓Ω𝜓𝜃+𝐼 ≺ 1; (b) �̄�𝜃𝜓Ω𝜓𝛿 = 0; (c) �̄�𝛿𝜓Ω𝜓𝜃 = −Ω−1
𝛿𝛿 Ω𝛿𝜃(�̄�𝜃𝜓Ω𝜓𝜃+𝐼); (d) �̄�𝛿𝜓Ω𝜓𝛿+

𝐼 = 0; (e)

𝐼 + �̄�Ω𝜓𝜓 = [
𝐼 0

−Ω−1
𝛿𝛿 Ω𝛿𝜃 0

] [
�̄�𝜃𝜓Ω𝜓𝜃 + 𝐼 0

0 0
] .

Proof. Tedious linear algebra shows that the left hand side in (a) is

𝐼 − [
( ̄𝒬𝑧𝑧 − ̄𝒬𝑧𝜈

̄𝒬−1
𝜈𝜈

̄𝒬𝜈𝑧)−1 0
0 ( ̄𝒬𝜈𝜈 − ̄𝒬𝜈𝑧

̄𝒬−1
𝑧𝑧

̄𝒬𝑧𝜈)−1] × [
𝒬𝑧𝑧 − ̄𝒬𝑧𝜈

̄𝒬−1
𝜈𝜈 𝒬𝜈𝑧 𝒬𝑧𝜈 − ̄𝒬𝑧𝜈

̄𝒬−1
𝜈𝜈 𝒬𝜈𝜈

𝒬𝜈𝑧 − ̄𝒬𝜈𝑧
̄𝒬−1
𝑧𝑧 𝒬𝑧𝑧 𝒬𝜈𝜈 − ̄𝒬𝜈𝑧

̄𝒬−1
𝑧𝑧 𝒬𝑧𝜈

] .

Apply lemma 41. Showing results (b) to (d) then just entails multiplying out thematrices and result (e)
reformulating.

Lemma 41. (a) ̃𝒬𝜃𝜃 ≃ 1; (b) ̃𝒬𝜃𝜃 − ̃̄𝒬𝜃𝜃 ≺ 1.

Proof. First (a):

𝒬𝜃𝜃 = ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃 + ℒ𝜃𝛿ℒ−1

𝛿𝛿 𝒦(𝐼 + 𝒦⊺ℒ−1
𝛿𝛿 𝒦)−1𝒦⊺ℒ−1

𝛿𝛿 ℒ𝛿𝜃 ≃

(ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃) + ℒ𝜃𝛿ℒ−1

𝛿𝛿 Π𝛿𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃, (50)

by lemma 42. The second right hand side term in (50) is≃ 𝑀 by condition (f) of assumption F. Now,
the first right hand side term in (50). Note thatℒ𝜓𝜓 ≥ ℒmic

𝜓𝜓 and henceℒ−1
𝜓𝜓 ≤ ℒmic−1

𝜓𝜓 , which in turn
implies (using partitionedmatrices) that

ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃 = ([𝐼 0] ℒ−1

𝜓𝜓 [
𝐼
0
])

−1

≥ ([𝐼 0] ℒmic−1
𝜓𝜓 [

𝐼
0
])

−1

= ℒmic
𝜃𝜃 − ℒmic

𝜃𝛿 ℒmic−1
𝛿𝛿 ℒmic

𝛿𝜃 .

Thus, ̃𝒬𝜃𝜃 ≥ P𝜃(ℒmic
𝜃𝜃 −ℒmic

𝜃𝛿 ℒmic−1
𝛿𝛿 ℒmic

𝛿𝜃 +𝑀𝐼) P𝜃 ⪰ 1,byassumptionG.Sowehaveshownthat ̃𝒬𝜃𝜃 ⪰ 1.
We now show that it is⪯ 1, also, for which it remains to be shown that P𝜃(ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1

𝛿𝛿 ℒ𝛿𝜃) P𝜃 ⪯ 1.
Sinceℒmac

𝜃𝜃 − ℒmac
𝜃𝛿 ℒmac−1

𝛿𝛿 ℒmac
𝛿𝜃 = 0, we have

P𝜃(ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃) P𝜃 = P𝜃(ℒmic

𝜃𝜃 − ℒmic
𝜃𝛿 ℒ−1

𝛿𝛿 ℒ𝛿𝜃) P𝜃
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+ P𝜃ℒmac
𝜃𝛿 ℒmac−1

𝛿𝛿 ℒmic
𝛿𝛿 ℒ−1

𝛿𝛿 ℒ𝛿𝜃 P𝜃 − P𝜃ℒmac
𝜃𝛿 ℒmac

𝛿𝛿 ℒmic
𝛿𝜃 P𝜃

≤ 1
2
P𝜃((ℒmic

𝜃𝜃 + ℒmic
𝜃𝛿 𝜕𝜃⊺𝛿 + 𝜕𝜃𝛿⊺ℒ𝛿𝜃 + 𝜕𝜃𝛿⊺ℒ𝛿𝛿𝜕𝜃⊺𝛿)

+ (ℒmic
𝜃𝜃 + ℒmic

𝜃𝛿 𝜕𝜃⊺𝛿mac + 𝜕𝜃𝛿mac⊺ℒ𝛿𝜃 + 𝜕𝜃𝛿mac⊺ℒ𝛿𝛿𝜕𝜃⊺𝛿mac)) P𝜃 ≤ P𝜃ℒmic
𝜃𝜃 P𝜃, ⪯ 1,

by assumption G, where the penultimate inequality follows from the theory of partitionedmatrices.
Now result (b). First,

P𝜃{(ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1
𝛿𝛿 ℒ𝛿𝜃) −ℒ𝜃𝜃 − ℒ𝜃𝛿ℒ−1

𝛿𝛿 ℒ𝛿𝜃} P𝜃

=
𝑀

∑
𝑚=1

P𝜃{(ℒ𝑚𝜃𝜃 − ℒ𝑚𝜃𝛿ℒ−1
𝑚𝛿𝛿ℒ𝑚𝛿𝜃) −ℒ𝑚𝜃𝜃 − ℒ𝑚𝜃𝛿ℒ−1

𝑚𝛿𝛿ℒ𝑚𝛿𝜃} P𝜃 ≺ 1,

by a weak law of large numbers for triangular arrays, e.g. Davidson (1994, theorem 19.7). Now,

P𝜃(ℒ𝜃𝛿ℒ−1
𝛿𝛿 𝒦𝒦⊺ℒ−1

𝛿𝛿 ℒ𝛿𝜃 −ℒ𝜃𝛿ℒ−1
𝛿𝛿 �̄��̄�⊺ℒ−1

𝛿𝛿 ℒ𝛿𝜃) P𝜃,

because 𝒦𝒦⊺ = 𝑃𝐵𝒦𝒦⊺𝑃𝐵, 𝑃𝐵 = 𝐵𝐵+, (ℒ𝜃𝛿ℒ−1
𝛿𝛿 𝐵 − ℒ𝜃𝛿ℒ−1

𝛿𝛿 𝐵) ≺ 𝑀 by a weak law of large
numbers,𝐵+𝒦𝒦⊺𝐵+⊺ ⪯ 𝑀−1, and

𝐵+(𝒦𝒦⊺−�̄��̄�⊺)𝐵+⊺ = (𝐵⊺𝐵)−1(𝐵⊺�̄�(�̄�⊺𝑃𝐵�̄�)−1�̄�⊺𝐵−𝐵⊺𝑋(𝑋⊺𝑃𝐵𝑋)−1𝑋⊺𝐵)(𝐵⊺𝐵)−1 ≺ 𝑀−1,

since𝐵⊺(𝑋 − �̄�)/𝑀 ≺ 1.

Lemma 42. 𝒦⊺ℒ−1
𝛿𝛿 𝒦 ≺ 1.

Proof. The trace of the left hand side is

tr(𝒦⊺𝒫𝐵ℒ−1
𝛿𝛿 𝒫𝐵𝒦) = tr{(𝐵⊺𝐵)−1

𝑀
∑
𝑚=1

𝐵⊺
𝑚ℒ−1

𝑚𝛿𝛿𝐵𝑚(𝐵⊺𝐵)−1𝐵⊺𝒦𝒦⊺𝐵} ≺ 𝑀−1×𝑀×𝑀−1×𝑀 = 1.

Lemma 43. {ℒ𝜃𝛿ℒ−1
𝛿𝛿 − 𝔼(ℒ𝜃𝛿ℒ−1

𝛿𝛿 | ℬ)}𝐵 ⪯
√

𝑀.

Proof. Take any linear combination, square, and take expectations to obtain the square of the promised
rate.

F.4.3 Estimated covariancematrix. Let ̂f𝑚 be an element of ̂ℒ𝑚𝜃𝜃 − ̂ℒ𝑚𝜃𝛿
̂ℒ−1
𝑚𝛿𝛿

̂ℒ𝑚𝛿𝜃.

Lemma 44. 𝒟−1
Λ �̂�Λ − 𝐼 ≺ 1.

Proof. IfΛ selects only elements of 𝜃 then this follows fromlemma45. For 𝛿’s theproof is analogous.
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Lemma 45. ̂̃𝒬𝜃𝜃 − ̃𝒬𝜃𝜃 ≺ 1.

Proof. The proof follows the same steps as that of lemma 41 with the main difference that now
̂ℒmac
𝜃𝜃 {𝜃, ̂𝛿mac(𝜃)} − ̂ℒmac

𝜃𝛿 {𝜃, ̂𝛿mac(𝜃)} ̂ℒmac−1
𝛿𝛿 {𝜃, ̂𝛿mac(𝜃)} ̂ℒmac

𝛿𝜃 {𝜃, ̂𝛿mac(𝜃)} = 0 for all 𝜃 and noting that
by lemma 46, P𝜃( ̂ℒmac

𝜃𝜃 { ̂𝜃, ̂𝛿( ̂𝜃)} − ̂ℒmac
𝜃𝛿 { ̂𝜃, ̂𝛿( ̂𝜃)} ̂ℒmac−1

𝛿𝛿 { ̂𝜃, ̂𝛿( ̂𝜃)} ̂ℒmac
𝛿𝜃 { ̂𝜃, ̂𝛿( ̂𝜃)}) P𝜃 ≺ 1.

Lemma 46. ∑𝑀
𝑚=1[ ̂f𝑚{ ̂𝜃, ̂𝛿𝑚( ̂𝜃)} − ̂f𝑚{ ̂𝜃, ̂𝛿mac𝑚 ( ̂𝜃)}] ≺ 𝜌2

𝜈.

Proof. Using arguments similar to those in lemma 27, it can be shown that

max
𝑚=1,…,𝑀

𝑁𝑚∥ ̂𝛿𝑚( ̂𝜃) − ̂𝛿mac𝑚 ( ̂𝜃)

− ℒ−1
𝑚𝛿𝛿[ℒmic

𝑚𝛿𝛿ℒmac−1
𝑚𝛿𝛿 { ̂ℒmac

𝑚𝛿 + ℒmac
𝑚𝛿𝜃( ̂𝜃 − 𝜃0)} − { ̂ℒmic

𝑚𝛿 + ℒmic
𝑚𝛿𝜃( ̂𝜃 − 𝜃0)}]∥ ⪯ 1,

Then,

𝑀
∑
𝑚=1

[ ̂f𝑚{ ̂𝜃, ̂𝛿𝑚( ̂𝜃)} − ̂f𝑚{ ̂𝜃, ̂𝛿mac𝑚 ( ̂𝜃)}]

≃
𝑀

∑
𝑚=1

̂f𝑚𝛿ℒ−1
𝑚𝛿𝛿[ℒmic

𝑚𝛿𝛿ℒmac−1
𝑚𝛿𝛿 { ̂ℒmac

𝑚𝛿 + ℒmac
𝑚𝛿𝜃( ̂𝜃 − 𝜃0)} − { ̂ℒmic

𝑚𝛿 + ℒmic
𝑚𝛿𝜃( ̂𝜃 − 𝜃0)}]

⪯ √∑
𝑚

𝑁𝑚𝜒2
𝑚𝜆4 + 𝑁𝜒𝜆2

𝜌𝜈
+ √∑

𝑚
𝑁𝑚𝜒𝑚𝜆2 + √∑

𝑚
𝑁𝑚𝜒𝑚𝜆2 ≺ 𝜌2

𝜈,

as asserted.

F.5 Auxiliary results

Let𝑋𝑚 be thematrix with rows 𝑥⊺
𝑗𝑚 and define ‖𝑋𝑚‖𝑋 = ∑𝐽𝑚

𝑗=0‖𝑥𝑗𝑚‖.

Lemma 47. All elements of the ℓ-th partial derivative of log𝜋𝑧𝑖𝑚
𝑗𝑚 (𝜓𝑚)with respect to𝜓𝑚 are for all

ℓ ≥ 1 bounded in norm by𝐶ℓ‖𝑋𝑚‖2ℓ
𝑋 ‖𝑧𝑖𝑚‖ℓ, where𝐶ℓ is a constant independent of 𝑧𝑖𝑚, 𝑥⋅𝑚, 𝜓𝑚.

Proof. We show the result for ℓ = 1, where the result for higher order derivatives is a trivial extension.
First, for any 𝑘,

𝜕𝛿𝑘𝑚
log𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜃, 𝛿𝑚) = 1(𝑗 = 𝑘) −
∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)s𝑘𝑚(𝑧𝑖𝑚, 𝜈)𝜑(𝜈) d𝜈

𝜋𝑧𝑖𝑚
𝑗𝑚

,

which is bounded above in absolute value by 1, because s𝑘𝑚 ≤ 1.
Let 𝑧*𝑥𝑖𝑗𝑚𝑘 denote the variable that multiplies 𝜃𝑧

𝑘 in the numerator of s𝑗𝑚(𝑧𝑖𝑚, 𝜈; 𝜃, 𝛿𝑚), typically the
product of an element in 𝑧𝑖𝑚 and an element in 𝑥𝑗𝑚. Then
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𝜕𝜃𝑧
𝑘
log𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜃, 𝛿𝑚) = 𝑧*𝑥𝑖𝑗𝑚𝑘 −
𝐽𝑚

∑
𝑡=0

𝑧*𝑥𝑖𝑡𝑚𝑘
∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)s𝑡𝑚(𝑧𝑖𝑚, 𝜈)𝜑(𝜈) d𝜈

𝜋𝑧𝑖𝑚
𝑗𝑚

,

where the ratio is bounded above by one. Finally, assumewithout loss of generality that the regressor
multiplying 𝜃𝜈

𝑘 is 𝑥𝑗𝑚𝑘𝜈𝑘.Then,

𝜕𝜃𝜈
𝑘
log𝜋𝑧𝑖𝑚

𝑗𝑚 (𝜃, 𝛿𝑚) =
𝑥𝑗𝑚𝑘 ∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)𝜈𝑘𝜑(𝜈) d𝜈

𝜋𝑧𝑖𝑚
𝑗𝑚

−
𝐽𝑚

∑
𝑡=0

𝑥𝑡𝑚𝑘 ∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)s𝑡𝑚(𝑧𝑖𝑚, 𝜈)𝜈𝜑(𝜈) d𝜈
𝜋𝑧𝑖𝑚

𝑗𝑚
.

(51)
Now, by integration by parts,

𝑥𝑗𝑚𝑘 ∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)𝜈𝑘𝜑(𝜈) d𝜈
𝜋𝑧𝑖𝑚

𝑗𝑚
= 𝜃𝜈

𝑘𝑥𝑗𝑚𝑘 − 𝜃𝜈
𝑘

𝐽𝑚

∑
𝑡=0

𝑥𝑡𝑚𝑘
∫ s𝑗𝑚(𝑧𝑖𝑚, 𝜈)s𝑡𝑚(𝑧𝑖𝑚, 𝜈)𝜑(𝜈) d𝜈

𝜋𝑧𝑖𝑚
𝑗𝑚

,

where we can again use the fact that s𝑡𝑚 is bounded above by 1 to achieve the desired bound. Repeat for
the second right hand side term in (51).

Lemma 48. For some constant 𝑐 > 0 and all𝑚,

∀𝑚 ∶ ∀𝜃, 𝛿𝑚 ∶ 𝜆min(𝜕𝛿⊺
𝑚

𝜋𝑚(𝜃, 𝛿𝑚)) ≥ 𝑐 min
𝑗=1,…,𝐽𝑚

exp(𝛿𝑗𝑚)

{1 + ∑𝐽𝑚
𝑡=1 exp(𝛿𝑡𝑚)}2 .

Proof. Let 𝒮𝑚 = diag(s𝑚). Then,

𝜕𝛿⊺
𝑚

𝜋𝑚(𝜃, 𝛿𝑚) = ∫(𝒮𝑚 − s𝑚s
⊺
𝑚)𝜙 = ∫ 𝒮1/2

𝑚 (𝐼 − 𝒮−1/2
𝑚 s𝑚s

⊺
𝑚𝒮−1/2

𝑚 )𝒮1/2
𝑚 𝜙. (52)

The smallest eigenvalue of 𝐼 − 𝒮−1/2
𝑚 s𝑚s

⊺
𝑚𝒮−1/2

𝑚 is 1 − s
⊺
𝑚𝒮−1

𝑚 s𝑚 = s0𝑚, such that the right hand side
is bounded below by∫ 𝒮𝑚s0𝑚𝜙 = diag(∫ s𝑚s0𝑚𝜙), whose smallest eigenvalue is

min
𝑗=1,…,𝐽𝑚

∫ s𝑗𝑚s0𝑚𝜙 ≥ min
𝑗=1,…,𝐽𝑚

exp(𝛿𝑗𝑚)

{1 + ∑𝐽𝑚
𝑡=1 exp(𝛿𝑡𝑚)}2 ∫ s𝑗𝑚(𝑧, 𝜈; 𝜃, 0)s0𝑚(𝑧, 𝜈; 𝜃, 0)𝜙(𝜈) d𝐺(𝑧).

The stated result then follows from assumption C.

Lemma 49. Let {𝐴𝑚} be a sequence of matrices with a fixed number 𝑐 of columns and for which
𝐴𝑚 ∈ ℝ𝑑𝜓𝑚×𝑐 bemeasurable with respect to𝒥𝑚. Define𝐴𝑚 = [𝐴𝜃𝑚, 𝐴𝛿𝑚] and

𝐴 =
⎡
⎢
⎢
⎢
⎣

𝐴𝜃1 𝐴𝛿1 0 … 0
𝐴𝜃2 0 𝐴𝛿2 ⋱ ⋮

⋮ ⋮ ⋱ ⋱ 0
𝐴𝜃𝑀 0 … 0 𝐴𝛿𝑀

⎤
⎥
⎥
⎥
⎦

.
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Let further 𝐶 ∈ ℝ𝑑𝑏×𝑐 be measurable with respect to ℬ. If for some 𝜀 > 1, (a) 𝔼(𝐴⊺ℒ𝜓𝜓𝐴 +
𝐶⊺𝐵⊺𝐵𝐶) = 𝐼; (b) ∑𝑀

𝑚=1 ∑𝑀
𝑖=1 𝔼‖𝐴⊺

𝑚
̂ℒ𝜓𝑖𝑚‖2𝜀 = 𝑜(1); (c) ∑𝑀

𝑚=1 ∑𝐽𝑚
𝑗=1 𝔼‖𝐶⊺𝑏𝑗𝑚𝜉𝑗𝑚‖2𝜀 = 𝑜(1),

then𝐴⊺ ̂ℒ𝜓 + 𝐶⊺𝐵⊺𝜉
𝑑

→ 𝑁(0, 𝐼).

Proof. Let 𝑣 ∈ ℝ𝑐 with ‖𝑣‖ = 1. Then 𝜁𝑖𝑚 = 𝑣⊺(𝐴⊺
𝑚

̂ℒ𝜓𝑖𝑚 + 1(𝑖 = 1)𝐶⊺ ∑𝐽𝑚
𝑗=1 𝑏𝑗𝑚𝜉𝑗𝑚) is a

martingale difference sequence if the observations are ordered by market and then by consumer,
i.e. (𝑖, 𝑚) = (𝑁1, 1) precedes (2, 2). By Davidson (1994, theorem 24.3), we need to show that
(1)∑𝑀

𝑚=1 ∑𝑁𝑚
𝑖=1 (𝜁2

𝑖𝑚 − 𝔼𝜁2
𝑖𝑚) = 𝑜𝑝(1) and (2)max𝑚=1,…,𝑀 max𝑖=1,…,𝑁𝑚

|𝜁𝑖𝑚| = 𝑜𝑝(1). First (1). For
a generic constant𝐶∗, we have by the Burkholder and 𝑐𝑟 inequalities that

𝔼∣
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

(𝜁2
𝑖𝑚 − 𝔼𝜁2

𝑖𝑚)∣
𝜀

= 𝔼𝔼{∣
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

(𝜁2
𝑖𝑚 − 𝔼𝜁2

𝑖𝑚)∣
𝜀

∣ 𝒥} ≤ 𝐶∗
𝑀

∑
𝑚=1

𝑁𝑚

∑
𝑖=1

𝔼|𝜁2
𝑖𝑚 − 𝔼𝜁2

𝑖𝑚|𝜀,

which is 𝑜(1) by conditions (b) and (c). Finally, (2) follows from theMarkov inequality.

Lemma 50. Lemma 49 still holds if condition (a) is instead 𝔼(𝐴⊺ℒ𝜓𝜓𝐴 + 𝐶⊺𝐵⊺𝐵𝐶) − 𝐼 ≺ 1.

Proof. If 𝜁
𝑑

→ 𝑁(0, 𝐼) and𝑈 → 𝐼 then𝑈𝜁 = (𝑈 − 𝐼)𝜁 + 𝜁
𝑑

→ 𝑁(0, 𝐼).

F.6 Generic lemmas
Lemma 51. For a generic i.i.d. sample {𝑥𝑖(𝜃)} of size 𝑛, let

𝑆𝑛(𝜃) =
⎧{
⎨{⎩

1√
𝑛

𝑛
∑
𝑖=1

𝑥𝑖(𝜃) − 𝑥𝑖(𝜃0)
‖𝜃 − 𝜃0‖

, 𝜃 ≠ 𝜃0,

0, 𝜃 = 𝜃0.

Suppose that∀𝜃 ∈ Θ ∶ 𝔼𝑥𝜃𝑖(𝜃) = 0 for compactΘ and𝔼 sup𝜃∈Θ‖𝑥𝜃𝜃𝑖(𝜃)‖ < ∞. Then sup𝜃∈Θ|𝑆𝑛(𝜃)| ⪯
1.

Proof. Apply themean value theorem to obtain that for some 𝜃∗ ∈ Θ,

𝑆𝑛(𝜃) =
⎧{
⎨{⎩

( 1√
𝑛

𝑛
∑
𝑖=1

𝑥𝜃𝑖(𝜃∗))
⊺ 𝜃 − 𝜃0

‖𝜃 − 𝜃0‖
, 𝜃 ≠ 𝜃0,

0, 𝜃 = 𝜃0.
(53)

By example 19.7 of van der Vaart (2000),∑𝑛
𝑖=1 𝑥𝜃𝑖/

√
𝑛 converges weakly to a Gaussian process and

hence sup𝜃∈Θ‖𝑥𝜃𝑖(𝜃)‖ ⪯ 1.

Lemma 52. If 𝑥 ∼ 𝐸(𝜆) then 𝔼 exp(𝑐𝑥) = 𝜆/(𝜆 − 𝑐) < ∞ for all 𝑐 < 𝜆.

Proof. A change of variables shows that the density of 𝑦 = exp(𝑐𝑥) is (𝜆/𝑐)𝑦−(1+𝜆/𝑐)
1(𝑦 ≥ 1).
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Lemma 53. Suppose that
(i) for some functions ̂𝑓 , 𝑓 and all 𝛼, ̂𝛽(𝛼)minimizes ̂𝑓(𝛼, 𝛽) and 𝛽0(𝛼) is the unique minimizer

of 𝑓(𝛼, 𝛽)where 𝑓 is continuous, the parameter space of 𝛼, 𝛽 is the Euclidean product of their
respective compact parameter spaces, ̂𝑓 converges to 𝑓 in probability uniformly in𝛼, 𝛽;

(ii) ̂𝛽(𝛼) is a solution to
0 = ̂𝑓𝛽{𝛼, ̂𝛽(𝛼)}, (54)

and 𝛽0(𝛼) is a unique solution to 0 = 𝑓𝛽{𝛼, 𝛽0(𝛼)};
(iii) for some 𝜌𝑛 ≺ 1, sup𝛼∥𝑓−1

𝛽𝛽 {𝛼, 𝛽0(𝛼)} ̂𝑓𝛽{𝛼, 𝛽0(𝛼)}∥ ⪯ 𝜌𝑛;
(iv) for some open neighborhood ℵ(𝛼) of 𝛽0(𝛼), sup𝛼,𝛽∈ℵ(𝛼)(𝜆max{𝑓𝛽𝛽(𝛼, 𝛽)}/𝜆min{𝑓𝛽𝛽(𝛼, 𝛽)}) ⪯

1;
(v) for some 𝜌2𝑛 ≺ 1, sup𝛼‖𝑓−1

𝛽𝛽 {𝛼, 𝛽0(𝛼)} ̂𝑓𝛽𝛽{𝛼, 𝛽0(𝛼)} − 𝐼‖ ⪯ 𝜌2𝑛;
(vi) sup𝛼,𝛽∈ℵ(𝛼)‖𝑓

−1
𝛽𝛽 (𝛼, 𝛽) ̂𝑓𝛽𝛽(𝛼, 𝛽) − 𝐼‖ ≺ 1;

(vii) for some 𝜌3𝑛 ≺ 𝜌−1
𝑛 , the third partial derivatives of ̂𝑓with respect to 𝛽 are⪯ 𝜌3𝑛 uniformly in

𝛼, 𝛽.
Then, sup𝛼‖ ̂𝛽(𝛼) − 𝛽0(𝛼) + 𝑓−1

𝛽𝛽 {𝛼, 𝛽0(𝛼)} ̂𝑓𝛽{𝛼, 𝛽0(𝛼)}‖ ⪯ 𝜌𝑛(𝜌2𝑛 + 𝜌𝑛𝜌3𝑛).

Proof. We first show that ̂𝛽(𝛼) − 𝛽0(𝛼) is𝑂𝑝(𝜌𝑛), uniformly in𝛼. Consistency, uniformly in𝛼, follows
from (i). Applying themean value theorem to (54) in (ii), we have for some 𝛽∗(𝛼) that

sup
𝛼

‖ ̂𝛽(𝛼) − 𝛽0(𝛼)‖ = sup
𝛼

‖ ̂𝑓−1
𝛽𝛽 {𝛼, 𝛽∗(𝛼)} ̂𝑓𝛽{𝛼, 𝛽0(𝛼)}‖.

The 𝜌𝑛 rate then follows from (iii), (iv) and (vi).
Now, premultiply (54) by 𝑓−1

𝛽𝛽 {𝛼, 𝛽0(𝛼)} to obtain by themean value theorem and triangle inequality
that

sup
𝛼

‖ ̂𝛽(𝛼) − 𝛽0(𝛼) + 𝑓−1
𝛽𝛽 {𝛼, 𝛽0(𝛼)} ̂𝑓𝛽{𝛼, 𝛽0(𝛼)}‖ ≤

sup
𝛼

∥(𝑓−1
𝛽𝛽 {𝛼, 𝛽0(𝛼)} ̂𝑓𝛽𝛽{𝛼, 𝛽0(𝛼)} − 𝐼)( ̂𝛽(𝛼) − 𝛽0(𝛼))∥ + 𝑂𝑝(𝜌3𝑛) sup

𝛼
‖ ̂𝛽(𝛼) − 𝛽0(𝛼)‖2,

by (vii). Apply (v) and the 𝜌𝑛 rate obtained above to obtain the stated result.

G Monte Carlo Details
In this appendix, we provide additional details about theMonte Carlo specifications.
Mean product quality is specfied as 𝛿𝑗𝑚 = 𝛽𝑐 + 𝛽1𝑥1

𝑗𝑚 + 𝛽2𝑥2
𝑗𝑚 + 𝜉𝑗𝑚,where the true parameters

for 𝛽 are (−6, 1, 1). These were chosen so that the share of the outside good was roughly 20 percent
of the aggregate share, although this varies significantly frommarket to market. When exogenous,
𝑥𝑗𝑚 are distributed i.i.d. according to the standard normal distribution. The unobservable product
characteristic 𝜉𝑗𝑚 is distributed Pareto(2.3). We choose the Pareto distribution because the resulting
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sharesmimic real world data where there are a few large-share products andmany very small share
products.42

Consumers have observable characteristics, 𝑧𝑖𝑚 = (𝑧1
𝑖𝑚, 𝑧2

𝑖𝑚) that are drawn independently from the
standard normal distribution. Preference heterogeneity based on observable consumer characteristics
is parameterized according to𝜇𝑧𝑖𝑚

𝑗𝑚 = 𝜃𝑧
1𝑧1

𝑖𝑚𝑥1
𝑗𝑚 +𝜃𝑧

2𝑧2
𝑖𝑚𝑥2

𝑗𝑚,where the true values of 𝜃𝑧 in the baseline
specification are (1, 1). Altering 𝜃𝑧 affects the strength of identification of 𝜃𝜈 via the micro data by
increasing the variation in utility across consumers.
Consumers have unobserved characteristics 𝜈𝑖𝑚 = (𝜈1

𝑖𝑚, 𝜈2
𝑖𝑚)which are both distributed𝑁(0, 1),

and the unobserved heterogeneity term is 𝜇𝜈𝑖𝑚
𝑗𝑚 = 𝜃𝜈

1𝜈1
𝑖𝑚𝑥1

𝑗𝑚 + 𝜃𝜈
2𝜈2

𝑖𝑚𝑥2
𝑗𝑚,where the true parameters

for 𝜃𝜈 are (1, 1) in the baseline.
For each specification, we draw data for 50markets. Products in eachmarket are independent of

othermarkets. We vary the number of products in eachmarket with fivemarkets each of {10, 12, 14, 16,
18, 20, 22, 24, 26, 28}. There are 100, 000 consumers (𝑁𝑚) in eachmarket. For the consumer level data,
we take a random sample of size𝑆𝑚 for themicro dataset. In the baseline case,𝑆𝑚 = 1, 000. Themicro
data contains a consumer choice, 𝑦𝑖⋅𝑚 (a vector where 𝑦𝑖𝑗𝑚 = 1 if consumer 𝑖 chose product 𝑗 and zero
otherwise) together with their observable characteristics, 𝑧𝑖𝑚. In the baseline specification, average
share is roughly 2.1%, and the tenth percentile of shares is roughly 0.06%.
In specifyingΠ for the CLER estimator, we include the following elements in the instrument vector 𝑏:

a constant, product characteristics 𝑥𝑗𝑚, differentiation IVs following Gandhi andHoude (2020), where
the (𝑗, 𝑚) element is 𝑑𝑗𝑚 = ∑𝑗′∈𝐽𝑚𝑗(𝑥

𝑘
𝑗𝑚 − 𝑥𝑘

𝑗′𝑚)2, and the number of products in the market 𝐽𝑚.
Since 𝑑𝑏 = 6 > 𝑑𝛽 = 3,Π is overidentified for 𝛽 and the extra exclusion restrictions are potentially
useful to identify 𝜃. We include the same IVs in the alternative GMMcomparison.

References cited in the appendices
Berry, S. T. 1994. “Estimating discrete-choicemodels of product differentiation.”RANDJournal,
242–262.
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42The Pareto distribution has thicker tails than allowed by assumption C, but our assumptions are notminimal.
This choice also results in a bias which is visible for some simulations. Results for the case where 𝜉 is distributed
Normal, which do not exhibit this bias and satisfies assumption C, are available upon request.
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