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Abstract

There are settings in which linear prices are negotiated by procurement
agents and final consumption decision made by end users who are indifferent
to negotiated prices. For example, a patient seeking medical treatment is in-
different to the treatment’s cost, if it is covered by his insurance program. We
study bargaining for per-unit prices between suppliers and an intermediary who
represents price-insensitive consumers. Under simultaneous bargaining with all
suppliers, the resulting prices exceed the value of the good (or service) being
delivered, provided that the suppliers have sufficiently large bargaining power.
This overpricing is solved if simultaneous negotiations are replaced by sequen-
tial ones. The problem with sequential negotiations is that they necessitate
treating the suppliers asymmetrically, even if they are symmetric. We utilize
the result about sequential negotiations as a building block in a multi-period
model that resolves the issue: in this model, overpricing is prevented and all
suppliers are treated the same.
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1 Introduction

In most economic settings, agents care about prices and costs. Consumers care about

the prices of the goods they buy, firms about their production costs, and so on.

However, there are many settings in which linear prices are negotiated by procure-

ment agents and final consumption decision made by end users who are indifferent to

negotiated prices. For example:

• A fully-insured patient seeking medical treatment that is covered by medical

insurance—he ignores the treatment’s price when taking his decision since it is

paid by the insurer;

• A military commander choosing which (or how much) ammunition to use in

battle—he is unlikely to consider its costs.1

• The end user of a music subscirption service is indifferent to the price the service

provider pays for access to any particular music song.

A common feature of these examples is the vertically structured industry in which

an intermediary (e.g., an insurance company, Department of Defense, a streaming

service) bargains prices with multiple potential suppliers (e.g., hospitals, military

contractors), under the assumption that the negotiated prices will have minimal to no

effect on the end users’ consumption decisions. In turn, final payments are determined

by the negotiated price and the quantity consumed.

We study the implications of this scenario on popular models of negotiations. For

concreteness, we consider an insurer who bargains with hospitals for per-treatment

prices, and whose goal is to maximize the consumers’ expected surplus net of prices

1An account (in Hebrew) of ammunition-overuse in the IDF can be found in Shelah (2015), pages
44-45.
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payed. However, our results apply to any environment which is characterized by the

aforementioned vertical structure and price insensitivity.

The dominant approach in the literature models this bargaining enviornment with

multilateral simultaneous negotiations that follows an approach that originated in

Horn and Wolinsky (1988), where the insurer bargains with each hospital separately,

in accordance to the Nash bargaining solution (Nash 1950), taking the prices with all

other hospitals as given. Collard-Wexler et al. (2019), in a work to which we will refer

in more detail shortly, call it Nash-in-Nash (NiN); we follow their terminology. An

important distinction between the bargaining environment studied in Collard-Wexler

et al. (2019) and our setting is that in thier enviornment bargaining is over a lump

sum payment, whereas in our setting bargaining is over linear prices, with quantities

determined by downstream consumers. We feel that our setting is commonly observed

in the real world, and indeed has been dominant in applied work. For example, in their

analysis of bargaing in the multichannel TV market, Crawford and Yurukoglu (2012)

assume distributors and content providers bargain over per-subscriber licensing fees.

Similarly, analyses of bargainging between hospitals and insurers assume insurers and

hospital groups bargain over capitation rates rather than lump sum payments (e.g.,

Gowrisankaran et al. 2015, Ho and Lee 2017). We will refer to our approach as the

linear NiN model to distinguish it from the lump sum approach of Collard-Wexler et

al. (2019).

In the linear NiN model, the insurer bargains with each hospital, holding the

contracts with all other hospitals fixed. The Nash product is formed by comparing the

hospital-network’s surplus with and without the bargained-with hospital. Consider

the case of two hospitals, A and B. Consider bargaining with A, given the negotiated

price with B. The network’s surplus without A depends not only on B’s price but also

on A’s patients that would substitute to B if A left the network, and their value for
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B. Since patients are price-insensitive, they will go to hospital B even if their value

for B is lower than B’s price. Thus, in the event that A drops out of the network,

these patients may generate negative surplus: the utility they get from B—their

second choice hospital—is less than the price of B. As a result, A’s marginal value

per-patient when added to the network (given B’s price) is higher than its actual

per-patient value, since its addition prevents the aforementioned negative surplus

creation. We show that in any network with two or more hospitals, as long as some

patients substitute to an in-network hospital when their most preferred hospital is

out of the network, prices exceed patient valuations, given that hospitals’ bargaining

power is sufficiently large. We call this phenomenon Nash overpricing. In Theorem

1 we show that if the hospitals’ bargaining power is large enough, Nash overpricing

will occur for every hospital in the network, which we refer to as complete Nash

overpricing.

Mathematically, the overpricing in our model is a consequence of super-additivity

of mean hosptial valuations, which is itself a consequence of patients’ demand be-

ing insensitive to negotiated prices. To see this, consider again the two-hospital

example, and denote by v(AB), v(A), v(B), and v(∅) the insurer’s value (i.e., the

total surplus generated) from the four possible hospital networks. It is easy to check

that maximizing Nash products implies that the price payed to hospital j = A,B

is tNj = β[v(AB) − v(j)], where β ∈ (0, 1) is the hospitals’ bargaining power pa-

rameter. Therefore, if β is close to one, the insurer’s surplus from the full network,

v(AB)− tNA − tNB , is approximately:

v(AB)− tNA − tNB = v(AB)− v(AB) + v(A)− v(AB) + v(B) =

v(A) + v(B)− v(AB),
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and the last term is negative if v is super-additive, which it is in our model. Our first

main contribution is not highlighting the significance of super-additivity in applied

bargaining settings—this is already known.2 Instead, it is showing how the combina-

tion of price-insensitivity and bargaining over per-unit prices implies super-additivity,

and hence implies the overpricing that goes along with it.

NiN is a popular framework for studying bargaining problems, especially in applied

settings. Collard-Wexler et al. (2019) provide an analysis of this framework, in

a model that generalizes Rubinstein’s (1982) alternating offers game. Though the

game they study is non-cooperative, the Nash bargaining solution can be applied to

their model, and the prices it provides approximate the ones obtained in the non-

cooperative equilibrium of their game as the players become infinitely patient; that

it, “Rubinstein prices” converge to “Nash prices.”3

Whereas Collard-Wexler et al. (2019) provide a rather general account of NiN,

our model is not a special case of theirs. There are two substantial differences:

First, Collard-Wexler et al. (2019) take their primitive payoff functions to be price-

independent; second, they take bargaining to be over lump-sum transfers. We, by

contrast, consider an objective that depends on per-unit prices crucially. Bargaining

over linear (per-unit) prices is the typical assumption in applied work.4 That per-

unit prices play a central role in the emergence of overpricing can be seen by a careful

comparison to Collard-Wexler et al. (2019): their Lemma 2.2 establishes that in their

environment (where bargaining is over lump-sum transfers), Nash prices are always

below the value of the good being delivered, and this is so independent of any super-

or sub-additivity properties.5

2See Bloch and Jackson (2007).
3This is a general version of the known “Rubinstein-to-Nash convergence” (Binmore et al. 1986).
4See, e.g., Ho and Lee (2017).
5Super-additivity ensures equilibrium existence in their non-cooperative game.
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Our next contribution is to establish that overpricing is a consequence of the

simultaneous negotiations framework. If negotiations are carried out sequentially

rather than simultaneously, overpricing is prevented. With J hospitals ordered in a

sequence, given that prices with hospitals {1, · · · , J − 1} have been determined, the

insurer faces a standard 2-player bargaining problem with hospital J , in which his

payoff is positive. In the negotiation with hospital J−1 this is taken into account, and

so negotiations with hospital J − 1 are also a standard 2-player bargaining problem

in which the insurer’s payoff is positive, and so on.

Under sequential negotiations the insurer’s payoff is independent of the order of

negotiations. The reason is that the prices that are obtained by maximizing Nash

products internalize the effects of earlier negotiations on later ones, and this inter-

nalization turns out to be perfect: switching from any negotiations order to any

other results in price-adjustments that exactly off-set the changes induced by price-

insensitivity. By contrast, hospitals do care about the order of negotiations, at least

under some conditions. For example, this is the case if there are only two hospitals.

In this case, the first hospital’s price is lower than that of the second, because once

there is disagreement with the first hospital and it “drops out” of the game, the

second hospital becomes a monopolist; by contrast, there is no such effect for the

first hospital when the second hospital drops out. Hospitals’ payoffs increase in their

bargaining-sequence position also in the case of arbitrarily many symmetric hospitals.

Interestingly, the first hospital in the sequence earns a low payoff, given any number

of hospitals, and regardless of whether they are symmetric or not. As we explain

shortly, this finding turns out to be useful.

The result that the order of negotiations matters to hospitals is a challenge for

applied work since in general the precise order of negotiations will be unknown. There-

fore, our third contribution is to briefly sketch a model in which overpricing is resolved,
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but hospitals are treated symmetrically. Specifically, we propose the following “semi-

cooperative” multi-period model, in which, in addition to the bargaining-power pa-

rameter β, there is one additional parameter—the hospitals’ discount factor, δ. The

model is such that every period the insurer makes simultaneous price offers to all

hospitals, to which they simultaneously respond by acceptance or rejection. If all ac-

cept, the offered prices are contracted for the period, and the game moves one period

ahead. In equilibrium everybody accepts the offers, so a rejection means a deviation;

once there is a rejection by some hospital, say jD, then the model enters an absorb-

ing phase in which only payoffs are described, but the underlying actions are not

(hence the “cooperative” in our “semi-cooperative” terminology). These payoffs are

the ones derived from the sequential negotiations model mentioned above, in which

the sequence is selected at random, out of the set of sequences in which the deviating

hospital (jD) is placed first.6 As mentioned above, the “punishment price” that this

first-placed hospital obtains is low, hence it deters the hospitals from rejecting their

price offers.

We focus on the equilibrium which is best for the insurer. As (β, δ) → (1, 1),

the equilibrium price payed to each hospital converges to the abovementioned “pun-

ishment price,” and the insurer’s payoff converges to a positive number. When

(β, δ) ∼ (1, 1), the “punishment price” payed to a hospital is approximately that

hospital’s standalone value—what the hospital contributes on average per treated

patient, when it is the only hospital in the network. This number is smaller than the

hospital’s value, because when the hospital is the only available option, it also serves

patients for whom it is the second-best choice.

The rest of the paper is organized as follows. Section 1.1 reviews the literature.

6As far as we can tell, we are the first to consider a model in which behavior is described explicitly
“on the path” but “off the path” only payoffs are specified, and these are derived by means of a
cooperative solution concept.
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Section 2 lays down the environment, Second 3 considers simultaneous negotiations,

Section 4 considers sequential negotiations, Section 5 considers our multi-period semi-

cooperative model, and Section 6 concludes with a discussion. The overpricing prob-

lem that we identify in the NiN model is derived under the assumption that the pool

of hospitals is exogenous. In Appendix A we show that being able to exclude some

hospital from the pool (ex ante exclusion), as well as excluding some hospitals after

contracts with them have already been signed (ex post exclusion), do not provide

a satisfactory solution to overpricing. Thus, the overpricing problem is robust. In

Appendix B we discuss the insurer’s outside option, Appendix C provides estimating

equations for the multi-period model and Appendix D collects proofs.

1.1 Literature

Our paper belongs to a strand of literature that concerns bilateral bargaining in

vertically-structured markets.7 Horn and Wolinsky (1988) and Collard-Wexler et al.

(2019) are central references in this regard.

One of our non-trivial findings is that under sequential negotiations, the insurer’s

payoff is independent of the hospital order. There are bargaining settings in which

the order of negotiations matters (Manea 2018, Xiao 2018), and there are settings in

which it does not, at least under some assumptions (Marx and Shaffer 2007, Krasteva

and Yildirim 2012). A deeper investigation on order-dependence (or independence)

in an environment with price-insensitive consumers is beyond the scope of the present

paper.

The bargaining externalities in our paper (the price payed to B influences bargain-

ing with A) make it relate to the literature on contracting with externalities, though

7A more general framework is that of bargaining in networks. E.g., Abreu and Manea (2012),
De Fontenay and Gans (2013), Stole and Zwiebel (1996).
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much of this literature concerns externalities among agents, whereas we focus on the

principal who is contracting with them (the insurer).8

Finally, though our study is theoretical, our models are inspired by the applied

theoretical work from the health economic literature; an important reference in this

regard is the handbook chapter by Gaynor and Town (2011). The linear NiN model

is also used to estimate bargaining environments by Crawford and Yurukoglu (2012),

Gowrisankaran et al. (2015) and Ho and Lee (2017), among others.

2 The environment

An insurer bargains with J ≥ 2 hospitals on behalf of a mass of heterogeneous

patients. Under the full network, which comprises all J hospitals, the quantity of

patients treated by hospital j is qj > 0. The expected value for a patient who goes to

hospital j (given the full network) is vj > 0.9 Regardless of what hospitals are in the

network, patients always have the (outside) option of not seeking medical treatment,

which is associated with the value zero.

If a hospital, say j, is not part of the network, then it is not available for patients

to seek treatment. This event only affects those patients who prefer to be treated

at j, who then go to their next preferred hospital. The hospital choice of patients

that chose hospital l ̸= j when j is in the network does not change. The mass of

additional consumers for hospital k when hospital j is dropped from the network and

those patients’ expected value are denoted by qk,−j and vk,−j, respectively.

Hospitals can treat patients with a marginal cost cj ≥ 0. Therefore, under the

8See Galasso (2008) and the references therein.
9The expectation is over patients: the patients are heterogeneous, and distinct patients for whom

j is the most preferred hospital may value it differently.
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full network hospital j’s profit is:

πj = (pj − cj)qj.

If hospital j is out of the network, it receives zero profit. However, if another

hospital, say k, is out of the network, j receives more patients and its profits become:

πj,−k = (pj − cj)(qj + qj,−k) .

The hospitals are symmetric if {qj, vj, qk,−j, vk,−j, cj} are independent of k and j.

We make the following assumptions:

• (I) For all j:
∑

k ̸=j qk,−j > 0;

• (II) For all distinct j and k: qj,−k > 0 ⇒ vj > vj,−k;

• (III) For all j: cj < min{vj,−k : qj,−k > 0};

• (IV) For all distinct j and k with qk,−j > 0: vj − cj > vk,−j − ck.

(I) says that for every hospital j, at least some patients have a second-choice-

hospital that they prefer over the outside option. (II) requires that patients whose

first choice of a hospital is j, on average value hospital j more than patients for whom

j is the second choice. (III) says that the surplus from providing service to patients

for whom the service provider is the second choice is still a positive surplus. This has

two important implications. First, it implies—because of (I) and (II)—that cj < vj,

and so the surplus from the full network is positive. Second, it means that negative

surplus for the insurer—the thing around which our paper pretty much revolves—

is only because of overpricing, not because of providing service by “technologically
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expensive/inefficient” hospitals. Finally, (IV) is a bound that means that the surplus

generated by the first-choice hospital is large enough; specifically, it is greater than the

surplus that would have been generated had that first choice been removed from the

network and then we looked at what surplus the patients who remain in the network

generate in any other hospital. This assumption follow from (II) if all hospitals have

the same cost.

In all of our examples the cost, for simplicity, is taken to be zero. Under zero cost,

(III) and (IV) follow from (I) and (II).

For expositional clarity, we assume the insurer maximizes patient surplus, net of

prices payed. Therefore, the insurer’s value from the full network, given a price vector

p = (p1, . . . , pJ), is:

F (p) =
J∑

j=1

(vj − pj)qj. (1)

This assumption abstracts away from the insurer adjusting downstream contacts be-

tween it and patients as a result of disagreements (such as making changes to premi-

ums) as these are not the focus of our study. It corresponds to two plausible scenarios.

First, the insurer will maximize patient valuation if it is acting as an agent for con-

sumers seeking, as one might suppose of a self-insuring employer offering medical

insurance as a benefit to employees. Second, an insurer will do so if it has complete

market power over consumers and is able to fully extract the surplus.

Similarly, the insurer’s surplus from the network without hospital j, given the

remaining hospital prices, is:

F−j(p) =
∑
k ̸=j

[
(vk − pk)qk + (vk,−j − pk)qk,−j

]
. (2)

We study several bargaining protocols between the insurer and the hospitals, to be
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specified in the next sections; the (asymmetric) Nash bargaining solution is common

to them, which justifies the following terminology: we say that Nash overpricing

occurs if there is some hospital j whose price exceeds its value, i.e., pj > vj. If this is

true for every j, then we say that there is complete Nash overpricing.

3 Simultaneous negotiations

We start by considering the case where prices between the insurer and each hospital

are set following the Nash bargaining solution, holding all other prices fixed. The

hospitals’ bargaining power parameter is β ∈ (0, 1). We refer to this model as the

linear NiN model, and to its prices as NiN prices.

The NiN prices (pN1 , · · · , pNJ ) satisfy:

pNj = max
pj

[F (pj, p
N
−j)− F−j(p

N
−j)]

(1−β) · [qj(pj − cj)]
β.

Maximization of the Nash product gives:

pNj = β[vj −
∑

k ̸=j(vk,−j − pNk )qk,−j

qj
] + (1− β)cj. (3)

A solution to this system of equations is called an equilibrium.

Theorem 1. In the NiN model, an equilibrium exists, and it is unique. There exists

a β̄ < 1, such that if the hospitals’ bargaining power parameter satisfies β ∈ (β̄, 1),

then each of the NiN prices exceeds the value of service in the corresponding hospital.

That is,

pNj > vj ∀j = 1, · · · , J.

Namely, there is complete Nash overpricing.
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Proof. We start by establishing existence and uniqueness. Note that we may assume

that prices never exceed some (possibly large) bound M : clearly, no hospital can

obtain a price that exceeds its value plus all the “adverse selection prevention” that

its addition to the network can bring about. Then the RHS of (3) describes a map

from [0,M ]J into itself. Though this is a map of vector-to-vector, it can be viewed as

an operator on functions because a vector is a constant function. It is easy to check

that this operator—i.e., the RHS of (3)—satisfies Blackwell’s sufficient conditions for

contraction (monotonicity and discounting). Therefore, (3) has a unique solution;

that is, an equilibrium exists, and is unique.

We now turn to complete Nash overpricing. Consider the formulas for NiN prices:

pNj = βvj +
β

qj

∑
k ̸=j

(pNk − vk,−j)qk,−j + (1− β)cj. (4)

Let p0 be the vector of prices that solves the above system (uniquely), when

qk,−j = 0 for all distinct k and j. That is, p0k = βvk + (1 − β)ck. Suppose that β is

large enough, so that each p0k is sufficiently close to vk, so that the following holds:

p0k > vk,−j for all j ̸= k.

Now increase {qk,−1}k>1 from zero to their true values. These (J − 1) coefficients

only appear in the formula for the first price, and because p0k > vk,−1 for all k ̸= 1 this

price increases: it changes from p01 to some p̃01 > p01. The change p01 7→ p̃01 increases

any other price p0k, and since prices depend positively on one another, the new price

vector that results, call it p1, satisfies p1k > p0k for all k.

Now increase {qk,−2}k ̸=2 from zero to their true values. By the same logic, the

resulting price vector, call it p2, satisfies p2k > p1k for all k. Repeating this process

iteratively we end up with the vector of NiN prices, pN . The analysis above implies
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that the following holds for all k and j ̸= k:

pNk > · · · > p2k > p1k > p0k > vk,−j.

Thus, when β ∼ 1 it follows from (4) that pNj ∼ vj +
1
qj

∑
k ̸=j(p

N
k − vk,−j)qk,−j >

vj.

In the next subsection we dive further into the linear NiN model by considering

a 2-hospital example in detail. A reader who is less interested in details and is more

interested in the big picture of our work can skip to Section 4.

Example: Two symmetric hospitals

Consider two hospitals, A and B. The cost of serving a patient is zero. The market

has four types of patients, {ab, a0, ba, b0}. Patients of type ab (resp. ba) have a value

of uh = 10 from being served by hospital A (resp. B) and ul = 5 from being served

by the other hospital. Patients of type a0 (resp. b0) have a value of uh = 10 from

hospital A (resp. B) but would leave the network if hospital A (resp. B) leaves

the network. In other words, the ab and a0 types prefer a over the alternatives but

disagree on their second choice hospital (B or out-of-network). The ab and ba types

(equivalently a0 and b0) disagree on whether their first option is A or B.

With both hospitals in the network, the insurer expects a unit mass of patients

for each hospital. There are α patients of type ab and the same for ba, and (1 − α)

patients of each of types a0 and b0.

Thus:

F (p) = 20− pA − pB ; and F−A(p) = α · (5− pB) + (10− pB) .
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Under Nash bargaining, if we hold pB fixed then pA solves:

max
p

(F − F−A)
(1−β) · pβ

The price response is given by:

pNA = β ·
[
10 (1− α) + α

(
5 + pNB

)]
. (5)

Equation (5) shows that A obtains a fraction β of the surplus it generates. The

(1 − α) new patients each account for 10 utils. The α patients that instead would

have went to B only gain 5 directly from going to their preferred hospital, but also

save the payment of pB.

Of these two consumer segments (1 − α and α), prices may surpass value only

because of the second (α) group. In particular, whenever pB > 5, the insurer actually

generates negative surplus serving these patients without A in the network. The

surplus that A generates to these patients is then higher than it’s ex-post per-patient

value of 10. If the hospitals’ bargaining power is sufficiently high so that hospitals

obtain most of the surplus they generate, price will be higher than the ex-post value.

Formally, prices are obtained by solving (5) and the symmetric equation for pB.

This gives:

pNj = 5β
2− α

1− βα
,

for both j ∈ {A,B}. The following is easy to verify:

pNj ≤ 10 ⇐⇒ β ≤ 2

2 + α
. (6)

Since the value from being served by the top choice is 10, it follows that for this
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example, β̄ from Theorem 1 equals 2
2+α

.

The example is easily generalized for any positive uh and ul. In particular, letting

ul = λuh for λ ∈ (0, 1) the insurer generates negative surplus (i.e., pNj > uh) iff:

β ≥ 1

1 + α(1− λ)
.10

In particular, for α, λ ∈ (0, 1), there is some β̄ < 1 such that for any β > β̄ the

price of each service is higher than its value.

4 Sequential negotiations

The difficulty in the linear NiN model lies in the hypothetical “disagreement event”

associated with each negotiation. For example, in the 2-hospital case, when A is out

of the network (i.e., there is disagreement with A) its entry-contribution exceeds its

true value because its absence from the network generates an adverse shift in patients

going to B which would be welfare reducing at B’s price. Avoiding this outcome

crucially depends on constructing a bargaining mechanism where the impact of dis-

agreement in a certain problem on other bargaining problems is taken into account.

We now take this approach, in our sequential Nash model, which is as follows: the

hospitals are ordered in a (commonly known) sequence, and if negotiation breaks

down with some hospital j, all subsequent negotiations assume that j is not in the

insurer’s network. That is, the economic environment is the same as the one consid-

ered in linear NiN, the only difference is that the Nash products reflect the order of

negotiations.

It is easy to see that the insurer’s surplus is positive under sequential negotiations.

10For λ = 0.5 one obtains (6).
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Consider again the 2-hospital case with A going first and B going second. Given any

outcome of negotiations with A, the bargaining problem with B must result in a non-

negative addition to the insurer’s overall surplus (or else the insurer will not sign a

deal with B). Additionally, one can map any possible outcome in the A-negotiations,

say o, to the subsequent bargaining problem with B, say P (o). Since the insurer’s

surplus in P (o) is non-negative given any possible o, the bargaining problem with

A boils down to a standard bargaining problem in which both parties make positive

profits. This idea generalizes to any length of hospital-sequence.

The sequential order of negotiations does not affect the insurer’s surplus, but it

does affect negotiated prices and hospital payoffs. For example, in the 2-hospital

case where A is first, disagreement with A automatically makes B a monopolist. In

contrast, disagreement with B cannot have such a favorable effect on A’s bargaining

position, since it can only happen after the interaction with A has concluded. Specif-

ically, either (i) a deal with A has already been signed and so A’s price is fixed, or

(ii) A has dropped out, and is no longer in the network. We show that if there are

only two hospitals, or if there are J symmetric hospitals, then prices are increasing

in the hospital’s position in the negotiation-sequence.

We start by presenting the 2-hospital case and then turn to the J-hospital case.

4.1 Two hospitals

The insurer negotiates first with hospital A. Consider the insurer’s bargaining with

hospital B given that bargaining with hospital A has concluded. Since pA has already

been determined, this bilateral negotiation is effectively equivalent to the linear NiN

bargaining setup. Without hospital B, the insurer’s surplus is determined by his
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agreement with hospital A. The insurer’s surplus with only A is:

F−B = qA(vA − pA) + qA,−B(vA,−B − pA).

For any price pB the insurer’s value with both hospitals in the network is:

F = qA(vA − pA) + qB(vB − pB).

Since the additional surplus accruing to the insurer from adding hospital B to a

network with only hospital A is bounded below by zero (else B would not be added),

it is given by:

F − F−B = max{0, qB(vB − pB)− qA,−B(vA,−B − pA)}.

For the moment, we assume that the addition of B is worthwhile, hence:

F − F−B = qB(vB − pB)− qA,−B(vA,−B − pA).

After making some calculations, we will verify, ex post, that this assumption is

indeed correct.

The Nash product is [F −F−B]
1−β · [qB(pB − cB)]

β. Maximizing it gives the price:

pB = β
qBvB − qA,−B(vA,−B − pA)

qB
+ (1− β)cB. (7)
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Substituting this pB into the expression for F we obtain:

F = qA(vA − pA) + qBvB − qB

[
β
qBvB − qA,−B(vA,−B − pA)

qB
+ (1− β)cB

]
= qA(vA − pA) + qB(vB − cB)(1− β) + βqA,−B(vA,−B − pA) .

(8)

Now consider bargaining with A. Without A, the insurer will bargain with B,

when the insurer’s outside option is zero. Maximizing the Nash product for this

problem gives:

F−A = (1− β)(qB(vB − cB) + qB,−A(vB,−A − cB)).
11

Therefore,

F − F−A = qA(vA − pA) + βqA,−B(vA,−B − pA)− (1− β)qB,−A(vB,−A − cB).

Maximizing the Nash product [F − F−A]
1−β · [qA(pA − cA)]

β gives:

pA = β
qAvA + βqA,−BvA,−B − (1− β)qB,−A(vB,−A − cB)

qA + βqA,−B

+ (1− β)cA . (9)

Equipped with these formulas, we can turn to the results.

Proposition 1. In the sequential Nash model with two hospitals, the insurer’s surplus

is independent of the order of negotiations.

Proof. Consider the case where hospital A is first and B is second. Plugging pA from

11The insurer obtains a (1− β)-fraction out of the surplus.
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(9) into the expression for the surplus, (8), gives the surplus:

(1− β)qA(vA − cA) + (1− β)qB(vB − cB) + β(1− β)qA,−B(vA,−B − cA)+

+ β(1− β)qB,−A(vB,−A − cB).

Clearly, the same expression obtains if B goes first.

We now turn to verify that the above derivation is valid; namely, that it is worth-

while to have the second hospital join the network at the second stage, and the

optimum network is the full one. W.l.o.g, it suffices to show that the full network

brings greater surplus than the one consisting only of B. Utilizing the expression

derived in Proposition 1’s proof, what needs to be verified is:

(1− β)qA(vA − cA) + (1− β)qB(vB − cB) + β(1− β)qA,−B(vA,−B − cA)+

+ β(1− β)qB,−A(vB,−A − cB) > (1− β)qB(vB − cB) + (1− β)qB,−A(vB,−A − cB),

which simplifies to:

qA(vA − cA) + βqA,−B(vA,−B − cA) > (1− β)qB,−A(vB,−A − cB).

By definition, qA ≥ qB,−A, and by assumption (IV) we have that vA − cA >

vB,−A − cB. Thus, the first term on the LHS is larger than the RHS. The remaining

element on the LHS is positive, by assumption (III).

The intuition behind Proposition 1 is that when bargaining with the first hospital

in the sequence, A, the insurer internalizes the effect that this bargaining will have on

the next problem in the sequence, namely negotiations with B. This is exemplified by
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the various terms on the RHS of (9). Most importantly, the denominator qA+βqA,−B

expresses this internalization. If, for example, qA,−B is large, then one implication of

signing a deal with A is that if there will be disagreement with B, many of B’s would-

be patients would now go to A, and in order to prevent the possibility of overpricing

a la linear NiN, the price needs to be adjusted sufficiently downwards, and this is

exactly what happens according to the price formula.

We now turn to the hospitals’ profits. Denote by π1
j the profit of hospital j if it is

the first hospital in the sequence, and denote by π2
j its profit if it is second.

Proposition 2. Consider the sequential Nash model with two hospitals. There exists

a β∗ < 1 such that if β ∈ (β∗, 1) then π1
j < π2

j for both j = A,B.

The intuition behind Proposition 2 is that being last in the negotiations sequence

confers a monopolistic position on the hospital, and this has no counterpart for the

first position in the sequence. The proof is relegated to Appendix C.

4.2 An arbitrary number of hospitals

In the case of J ≥ 3 hospitals we add the following assumption: we assume that

patients leave the insurer if their top two options leave the network. To see the

importance of this assumption, suppose that the hospitals are ordered from 1 to

J , and consider negotiations with hospital j − 1. If there is disagreement in these

negotiations, then the insurer moves on to bargain with hospital j. Now, in order

to formulate the Nash product for these negotiations, it is important to know what

happens in case there is disagreement with j; in particular, we need to know what

would happen to the patients who had j − 1 as their top choice, and would choose

j if j − 1 is out of the network. Our assumption allows us to ignore these patients;

that is, to assume that they leave the network. The following is a generalization of
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Proposition 1.

Proposition 3. In the sequential Nash model with J hospitals, the insurer’s surplus

is independent of the order of negotiations.

The intuition behind Proposition 3 is the same as the one behind Proposition 1.

The following is a generalization of Proposition 2, under the restriction of symmetry.

In its statement, πl is the profit of a hospital if it is in the l-th position in the sequence.

Proposition 4. Consider the sequential Nash model with J symmetric hospitals.

There exists a β̃ < 1 such that if β ∈ (β̃, 1) then πl is strictly increasing in l.

The proofs of Propositions 3 and 4 involve some tedious algebra, and are therefore

relegated to Appendix C. A key element in the analysis is the derivation of prices when

negotiations happen in a sequence. Since it will be useful in the next section, we now

provide (for the time being, without a proof) the price formula.

Recall that the hospitals have names: hospital 1, hospital 2, etc. Suppose that

the negotiation sequence is given by these labels, namely hospital 1 is the first in the

sequence, hospital 2 is second, and so on. Then, the price obtained by hospital i is:

pi = β
qivi + β

∑J
k=i+1 qi,−kvi,−k −

∑i−1
j=1 qj,−i(vj,−i − pj)− (1− β)

∑J
j=i+1 qj,−i(vj,−i − cj)

qi + β
∑J

k=i+1 qi,−k

+

+ (1− β)ci (10)

This formula generalizes (9). Setting in the formula i = 1 makes the middle term

in the numerator disappear.12 Therefore, when β ∼ 1 this price is approximately:

pD1 =
q1v1 +

∑J
k=2 q1,−kv1,−k

q1 +
∑J

k=2 q1,−k

. (11)

12This terms refers to i’s predecessors, which, for i = 1, do not exist.
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This hospital 1’s standalone value—what it contributes (per patient) when it is

the only hospital in the network. It is easy to see that pD1 < v1.

5 A multi-period model

We now turn to utilizing our results from the previous section in the following infinite-

horizon model. In each period t = 1, 2, · · · , the insurer makes simultaneous price offers

to the hospitals. These are given by a publicly-observed vector (p1(t), · · · , pJ(t)),

where pj(t) is the offer made to hospital j. The hospitals react simultaneously by

accept/reject responses. If all accept, the prices are implemented and play moves on

to the next period. Once there is a rejection by a single hospital, say jD, the following

applies:

• With every j ̸= jD, the price pj(t) is contracted with for period t, where t is

the period being considered (i.e., the one when the deviation occurred).

• The price contracted with jD is p̃jD ; it is determined by bargaining between

this hospital and the insurer, but as we will soon see there is no importance to

what exactly this price is, or to the bargaining mechanism that generates it.

• From t+1 onwards, prices are set at (p1(j
D), · · · , pJ(jD)) in every period, where

these are the prices obtained from the sequential negotiations model, where the

negotiations order is one of the orders in which jD is placed first in the sequence.

Specifically, the order is selected by a uniform randomization over all orders in

which jD is placed first.

This model is sparse on information. In particular, it is not a fully-specified

extensive-form game. First, only “on-path” behavior is described, and once play goes
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“off path” prices are set to the aforementioned levels (p1(j
D), · · · , pJ(jD)). Second,

our description of the shift from the on-path to the off-path phase is also partial,

because we do not specify what happens once several hospitals reject their offers

simultaneously.

We assume that all hospitals share the discount factor δ ∈ (0, 1) and we look for

a time-independent price vector (p∗1, · · · , p∗J) that will be accepted by all hospitals.

Consider hospital 1. Its associated incentive constraint is:

(1− δ)p̃1D + δpD1 ≤ p∗1. (12)

The analogous equation holds for any j = 2, · · · , J . A solution to this model

is a vector of prices, (p∗1, · · · , p∗J), that satisfy the J constraints and maximize the

insurers’ payoff. Clearly, these are the prices under which the J inequalities hold as

equalities, and as δ → 1 each p∗i converges to pDi . By equation (11), as β → 1 the

price pDi converges to i’s standalone value,
qivi+

∑
k ̸=i qi,−kvi,−k

qi+β
∑

k ̸=i qi,−k
. Since this standalone

value is strictly smaller than vi, the insurer makes positive profits under the model’s

solution when (β, δ) ∼ (1, 1).

Empirical Applicability

The linear NiN framework has served as a workhorse model for the empirical investi-

gation of multilateral bargaining, in part due to it’s empirical tractability (Crawford

and Yurukoglu 2012, Gowrisankaran et al. 2015, Ho and Lee 2017). This tractability

stems from the fact that, given observed prices and estimated demand elasticities, it

is possible to recover implied costs from the linear NiN model by solving a linear sys-

tem of equations. This permits straightforward estimation of linear NiN bargaining

parameters and costs via generalized method of moments. In Appendix C, we show
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that our multi-period model is also tractable for estimation, and represents a statisti-

cal generalization of linear NiN with one additional parameter—the discount factor δ,

and the system of equations that define costs under the multi-period model remains

linear (see equation 17 in Appendix C). Thus, there is no increase in computational

complexity when estimating our proposed model instead of linear NiN.

As hospitals’ discount factor δ approaches zero, the multi-period model, infor-

mally speaking, converges to a static model, and one would like to know what is

the relation between the resulting “static” model and NiN. Our analysis regarding

estimation sheds light on this question:

Proposition 5. Hospital costs and bargaining parameter estimates implied by linear

NiN model estimation are equivalent to those implied by multi-period model estimation

constrained to δ = 0.

Consequently the linear NiN model is testable against our more general proposal

using a straightforward hypothesis test. We establish this result in Remark 1 in

Appendix C.

6 Closing comments

We have studied bargaining between an intermediary and suppliers in which the total

surplus from a suppliers’ network is non-linear in the quantity sold by each supplier.

This feature makes sense when the intermediary acts on behalf of price-insensitive

users. We showed that under the common NiN approach, suppliers may charge unit

prices that surpass the unit value of their service, because of the negative surplus

which is created from directing users to second-best choices. If negotiations happen

in a sequence, this overpricing problem cannot arise.
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We have also constructed a multi-period model in which all suppliers are treated

identically in terms of their place in the bargaining mechanism (as opposed to one-shot

sequential negotiations), and the intermediary makes a positive payoff (as opposed

to one-shot simultaneous negotiations). This model has a non-cooperative aspect—

offers and responses on the path—and a cooperative aspect—Nash-bargaining payoffs

off the path. To the best of our knowledge, we are the first to consider such a hybrid

approach. A final question is whether using the more complicated multi-period

model is likely to result in different conclusions than linear NiN. This is of course an

empirical question and outside the scope of this paper, so we leave it to future work.
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7 Appendix A: Exclusion in the linear NiN frame-

work

7.1 Ex ante exclusion

In the linear NiN model with ex-ante exclusion a group of J hospitals is selected
out of a finite pool of potential hospitals, and only then, in a second stage, the NiN
interaction occurs with the selected hospitals. The solution concept for this model
is subgame perfect equilibrium: the insurer selects a group of hospitals such that its
surplus will be maximized, given the second-stage NiN prices.

Proposition 6. In the linear NiN model with ex-ante exclusion there exists a β∗ < 1
such that if β ∈ (β∗, 1) then in any subgame perfect equilibrium the selected network
consists of a single hospital.

Proof. Let X denote the hospital pool. By Theorem 1, for each subset of hospitals
X ⊂ X with at least two hospitals, there is a discount factor βX < 1 such that
if β > βX the insurer makes a negative surplus in the linear NiN model in which
the hospital network is X. Since the insurer makes a positive surplus when it Nash
bargains with any single hospital, the result follows by taking β∗ to be the maximum
of the βX ’s.

Proposition 5 implies that this two-stage structure cannot resolve the overpricing
problem satisfactorily: within the two-stage framework, the threat of overpricing leads
to a monopoly.

7.2 Ex post exclusion

An alternative to ex ante exclusion is ex-post exclusion linear NiN, suggested in Craw-
ford and Yurukoglu (2012). Here, the insurer may remove hospitals from the network
after the negotiation is complete. Ex-post exclusion guarantees the insurer at least
zero surplus—it is also possible to “undo” contracts—and thus avoids complete Nash
overpricing. However, some Nash overpricing may persist. That is, it is still possible
that for a sufficiently large β some hospital’s price exceeds the value of service. This
is illustrated in the following example.

Example: Partial Nash overpricing

Consider two hospitals and two types of patients ab, ba, with the same uh = 10 and
ul = 5 as in Example 1. However, in contrast to Example 1, assume a unit measure
of patients, with s of the patients type ab and 1− s of the patients of type ba.

The insurer’s value from a full network given prices pA, pB is:

F (p) = max{0, 10− pAs− pB(1− s), 10s+ 5(1− s)− pA, 10(1− s) + 5s− pB}
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Without A, the insurer’s value given pB is:

F−A(p) = max{0, 10(1− s) + 5s− pB}

The Nash bargaining price responses are:

pA(pB) =

{
β(pB + 5) pB ≤ 10− 5s

β 10−pB(1−s)
s

pB ≥ 10− 5s
; pB(pA) =

{
β(pA + 5) pA ≤ 5(1 + s)

β 10−pAs
1−s

pA ≥ 5(1 + s)

The pair p̂A = 10 β
s(1+β)

and p̂B = 10 β
(1−s)(1+β)

is a solution if β and s are such

that p̂A > 5(1 + s) and p̂B > 10 − 5s. Both p̂j increase with β and are continuous

for β ≥ 0. Assume β = 1. Then for s ∈ (0.5 − ξ̂, 0.5 + ξ̂), with ξ̂ = 1 −
√
5
2

we
have p̂A = 5

s
> 5(1 + s) and p̂B = 5

1−s
> 10− 5s. Therefore, for any such s which is

different from 0.5 one of the prices will exceed 10. By continuity, this is true also for
all sufficiently large β’s below 1.

8 Appendix B: The outside option

Under complete Nash overpricing, the insurer’s objective assumes a negative value.
In particular, not signing contracts with some hospitals is not a feasible alternative
and the insurer’s outside option is not zero, despite the fact that its payoff would
have been zero if it did not sign any contract. It should be noted, however, that there
is a limit to how low the insurer’s payoff can be. We illustrate this for the 2-hospital
case, though the idea is more general. Let P be the set of prices (pA, pB) that are
consistent with an equilibrium of the model. It is enough to show that there is some
bound p̄ such that pA ≤ p̄ for every (pA, pB) ∈ P that satisfy pB ≤ pA. Consider then
such prices. It holds that pA = β[v(AB) − v(B)] ≤ β[v̄ + αpB], for some numbers
v̄ > 0 and α ∈ (0, 1). Therefore, pA ≤ β[v̄ + αpA], hence p̄ = βv̄

1−αβ
. In particular,

prices are bounded above by βv̄
1−β

.

9 Appendix C: Estimating equations for the multi-

period model

Estimation of patient hospital demand is independent of the bargaining problem.
Therefore, we assume that the demand system is estimated prior to estimating costs
and bargaining parameter.13 This means that we can treat consumer expected val-
uations and choices conditional on the hospital network as known. The remaining

13For example, demand could be estimated following Capps, Dranove and Satterthwaite (2003). In
principle, it would be more efficient to estimate demand and supply jointly in a simultaneous equa-
tions framework, which is conceptually straightforward although computationally more demanding.
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parameters to estimate are the bargaining parameters (β, δ) and hospital costs. We
assume that hospitals face an constant marginal cost per patient which is a function
of a set of observable cost shifters, zj and a hospital specific error term,

cj = λzj + ωj

where λ is a vector of cost parameters to estimate. To estimate (β, δ, λ) we rely on the
pricing equations derived in the previous section. Specifically, similar to estimation
of the linear NiN model, marginal costs can be derived as a function of demand and
bargaining parameters, allowing us to recover ωj as a function of (β, δ, λ). We then
jointly estimate demand and cost parameters via non-linear generalized method of
moments (GMM).

Recall that the NiN price pN negotiated if the hospital rejects the initial take-
it-or-leave it offer is determined using treating all other prices as given. Letting p∗

denote the observed (and multi-period equilibrium) prices, equation (3), the linear
NiN prices satisfy:

pD = βθD + βΓDp∗ + (1− β)c (13)

Where, θD is a vector and ΓD is a matrix defined by:

θDj = vj −
∑

ℓ ̸=j vℓ,−jqℓ,−j

qj
; ΓD

j,l =
ql,−j

qj
; ΓD

j,−J = 0

Equation 13 proves Proposition 5: The price vector on the right hand side is the
observed prices. In particular, pN = p∗ if and only if the linear NiN model is correct.

Prices under the multi-period model are a convex combination of NiN prices and
each hospital’s “punishment” price from reverting to the sequential model with that
hospital negotiating in the first (least-favorable) position determined by the incentive
constraint (12). Rewriting this formula in terms of markups and using matrix notation
obtains,

pF = θF (β) + (I +ΨF (β)) · c (14)

The matrix ΨF (β) accounts for the impact of disagreement with hospital j on the
cost of treating patients,

ΨF
j,−J = β, ΨF

j,k ̸=j = β(1− β)
qk,−j

qj + β
∑

k ̸=j qj,−k

.

From this formula we see that a unit increase in hospitals cost causes price to go up
by 1+β. And is increasing in the costs of rival hospitals in proportion to substitution
to those hospitals when j is dropped from the system. That is, in the sequential
game, j’s bargaining position is enhanced when it’s patients are likely to substitute
to high cost hospitals. This feature of the sequential model will be inherited by the
multi-period solution but is absent from the linear NiN solution, which considers only
the importance of hospital j’s provision of surplus holding other hospital prices fixed.
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The vector θF (β) is,

θFj (β) = β
qjvj +

∑
k ̸=j [βqj,−kvj,−k − (1− β)qk,−jvk,−j]

qj + β
∑

k ̸=j qj,−k

The first term of the numerator represents the hospitals contribution to surplus, the
remaining terms are adjustments to hospital j’s bargaining position based on cross-
hospital substitution. If hospital j is rewarded to the extent that it can serve as a
substitute for hospital k in the event that bargaining with k fails. On the other hand,
j’s bargaining position is reduced if other hospitals are strong substitutes in the event
of its own disagreement.

Next, construct the multi-period model estimator by merging the linear NiN and
punishment price equations. Following the analysis in Section 5, the observed price
in the multi-period model is given by

p∗ = δpF + (1− δ)pD

Using equations (13) and (14) we have an expression that is linear in prices and costs,

p∗ = δθF (β) + δ(I +ΨF (β))c+ (1− δ)β(θD + ΓDp∗) + (1− δ)(1− β)c

To solve for either p∗ or c, rewrite as:

0 = Ψ(β, δ)c+ θ(β, δ) + Γ(β, δ)p∗ (15)

Here, the terms multiplying the cost vector c and price vector p are aggregated into
the matrices Ψ and Γ, and the constant terms are aggregated into the vector θ:

Ψ(β, δ) = I(1− β(1− δ)) + δΨF (β, δ)

Γ(β, δ) = (1− δ)βΓD − I

θ(β, δ) = δθF (β) + (1− δ)βθD
(16)

To back out costs from the demand system and bargaining parameters, solve (15)
for costs,

c(β, δ) = −Ψ(β, δ)−1(θ(β, δ) + Γ(β, δ)p∗). (17)

Proposition 5 is now immediate by observation: The linear NiN model is a special
case of the multi-period model with the value for δ set to zero.

Estimation of the supply side parameters using the multi-period model therefore
is similar to the existing method for linear NiN with the additional parameter (δ) and
a slightly more complicated non-linear function for costs. Specifically, given a set of
bargaining parameters the structural error in costs is,

ωj(α0, α1, β, δ) = cj(β, δ)− γzj.
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To construct the moments, define hj,n as a vector of instruments for hospital j in
market n. The data moments are:

gNJ(α0, α1, β, δ) =
1

NJ

∑
n,j

hn,jωn,j(α0, α1, β, δ) .

The GMM estimator is:

argmin
α0,α1,β,δ

gNJ(α0, α1, β, δ)
′WgNJ(α0, α1, β, δ).

Where W is a symmetric positive definite weight matrix. We use the standard 2-step
GMM to derive the optimal weight matrix for each dataset.

The observed cost shifters zj, are available as instruments, but we clearly need
two additional instruments to identify the two bargaining parameters. Candidates
are most likely to come from the exogenous variation in the demand system, which
generates variation in the substitutability of hospitals (e.g., vj,−k and qj,−k) that
represent the key primitives in the matrices defined in (16). An example of such
an instrument could be the distances between hospitals, or the relative weights of
different types of observable consumers which vary across markets. In the Monte
Carlo analysis below, we will assume the existence of an observable demand shifter
which will serve as instruments.

To conclude this section, note that, due to (5) the simultaneous linear NiN model
nests the multi-period model by fixing δ = 0, allowing us to test linear NiN against
a more general alternative. To facilitate comparison with the earlier literature, the
following remark establishes the connection between our notation and that of GNT.

Remark 1. To facilitate comparison with existing work, in particular Gowrisankaran
et al. (2015), rewrite (3) as

pNj − cj =
β

1− β

(
vj − pNj −

∑
l ̸=j ql,−j(vl,−j − pl)

qj

)
(18)

Next, let ξj equal to the right hand side of equation (18) for hospital j and define Λ
as a diagonal matrix with elements Λj,−J = − 1

ξjqj
. Then,

−Λ(pNj − cj) = qj

Λ is provided from the first stage estimates and observed prices. Note that this is
exactly equation 13 in Gowrisankaran et al. (2015), with the only differences that
Λ in that paper has off-diagonal elements to account for cross hospital effects for
hospitals within the same hospital system and that we omit their Ω which captures
patient price sensitivity of demand.
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10 Appendix D: Proofs

Proof of Proposition 2 : Wlog, consider hospital A. Since the quantities are unaffected
by price and by the order of negotiations, it is enough to show that for all sufficiently
large β’s we have p1A < p2A, where plA is the price corresponding to πl

A. It is enough
to verify that that’s the case when β = 1.

Setting β = 1 in (9) gives:

p1A =
qAvA + qA,−BvA,−B

qA + qA,−B

. (19)

Setting β = 1 in the analog of (7) gives:

p2A =
qAvA − qB,−A(vB,−A − p1B)

qA
.

We argue that
qAvA+qA,−BvA,−B

qA+qA,−B
<

qAvA−qB,−A(vB,−A−p1B)

qA
. Simplifying this expression

we get:
qAqA,−B(vA,−B − vA) < −qB,−A(vB,−A − p1B)(qA + qA,−B).

The LHS is negative since vA,−B < vA. Therefore, it is enough to prove that the
RHS is positive, or that p1B > vB,−A. Clearly, it is enough to show that p1A > vA,−B.
This follows immediately from (19), since vA > vA,−B.

Lemma 1. Consider Nash bargaining between the insurer and a hospital, under the
following assumptions:

1. The insurer’s profit without the hospital is V0.

2. The hospital’s unit cost is c and its bargaining power parameter is β.

3. If the hospital joins the network it serves a population of mass q.

4. Adding the hospital to the network at unit price p increases the insurer’s profit
by K − p · y.

Then the price is:

p = β
K

y
+ (1− β)c. (20)

The lemma’s proof boils down to a simple maximization of a Nash product, and
is therefore omitted.

In what follows we consider sequential negotiations between the insurer and the
hospitals, where the hospitals are order in a particular, commonly known order. Given
the order, each hospital has a position in it—the first in line, the second in line, etc.
In addition to that, the hospitals have names—hospital 1, hospital 2, etc.—and each
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name is associated with particular model-parameter-values, such as q1, q2, and so on.
We use the term canonical order to denote the order where the two label-systems
coincide; that is, hospital 1 is placed first in the canonical order, hospital 2 is second,
and so on.

Lemma 2: Consider sequential negotiations according to the canonical order,
{1, · · · , J}. Given this order, denote the insurer’s surplus after bargaining and signing
contracts with hospitals {1, · · · , i} for prices (p1, · · · , pi), and facing “future hospitals”
{i+ 1, · · · , J}, by V (p1, · · · , pi; {i+ 1, · · · , J}). This surplus is given by:

V (p1, · · · , pi; {i+ 1, · · · , J}) =

=
i∑

j=1

[qj(vj − pj) + β

J∑
k=i+1

qj,−k(vj,−k − pj)]+

+ (1− β)
J∑

j=i+1

[qj(vj − cj) + β
J∑

k=i+1,k ̸=j

qj,−k(vj,−k − cj)].

The price obtained by hospital i in these negotiations is:

pi = β
qivi + β

∑J
k=i+1 qi,−kvi,−k −

∑i−1
j=1 qj,−i(vj,−i − pj)− (1− β)

∑J
j=i+1 qj,−i(vj,−i − cj)

qi + β
∑J

k=i+1 qi,−k

+

+ (1− β)ci

Before we turn to the proof, it is worthwhile to consider the equation for the
above-mentioned value function V . The RHS is composed of two terms, one cor-
responding to the already-contracted-with hospitals and one corresponding to the
“future hospitals,” and the first term is such that for each element in the summation
(each j = 1, · · · , i) we have the “direct value” from the hospital plus β times the
value that this hospital generates assuming that all “future hospitals” drop out. It
will be useful to bear this meaning in mind later on in the proof.

Proof of Lemma 2 : Clearly, V (p1, · · · , pJ ; ∅) =
∑J

j=1 qj(vj−pj). When negotiating
with hospital J , given that contracts with all previous hospitals have been signed, the
insurer’s outside option is the value V (p1, · · · pJ−1; ∅) =

∑J−1
j=1 [qj(vj−pj)+qj,−J(vj,−J−

pj)]. Thus, the gain from adding J is:
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WJ(p1, · · · , pJ ; ∅) ≡ V (p1, · · · , pJ ; ∅)−V (p1, · · · , pJ−1; ∅) = qJ(vJ−pJ)−
J−1∑
j=1

qj,−J(vj,−J−pj) =

= qJvJ −
J−1∑
j=1

qj,−J(vj,−J − pj)︸ ︷︷ ︸
K

−pJ qJ︸︷︷︸
y

,

where the “K” and “y” are the notations of Lemma 1. Applying this lemma we
obtain the price pJ :

pJ = β
qJvJ −

∑J−1
j=1 qj,−J(vj,−J − pj)

qJ
+ (1− β)cJ . (21)

Having obtained the price and surplus for the last bargaining problem in the
sequence, we turn to the next-to-last bargaining. The value of these negotiations is
V (p1, · · · , pJ−1; {J}) =

∑J−1
j=1 qj(vj − pj) + qJ(vJ − pJ).

14 Note that we slightly abuse
notation to have pJ on the RHS is legitimate even though it does not appear as an
argument of the V function on the LHS, because of (21)—namely, pJ is pinned down
by the previous prices (and the other model parameters). Substituting pJ into the
expression gives:

V (p1, · · · , pJ−1; {J}) =
J−1∑
j=1

[qj(vj −pj)+βqj,−J(vj,−J −pj)]+(1−β)qJ(vJ − cJ). (22)

The outside option in the next-to-last negotiations has the value V (p1, · · · , pJ−2; {J}).
It follows from (22) that this value is:

V (p1, · · · , pJ−2; {J}) =
J−2∑
j=1

[qj(vj − pj) + qj,−(J−1)(vj,−(J−1) − pj)︸ ︷︷ ︸
L

+βqj,−J(vj,−J−pj)]+

+ (1− β) [qJ(vJ − cJ) + qJ,−(J−1)(vJ,−(J−1) − cJ)]︸ ︷︷ ︸
M

.

Here, L is the counterpart of qj(vj − pj) from (22), and M is the counterpart of
qJ(vJ − cJ) (expected value minus expected cost at the final hospital).15

14The value when the prices up to and including pJ−1 have been contracted, and the insurer

expects pJ to be contracted next is
∑J

j=1 qj(vj − pj).
15This is true because (22) holds also for a sequence of length J ′ = J − 1.
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The gain from the (J−1)-th bargaining isWJ−1(p1, · · · , pJ−1; {J}) = V (p1, · · · , pJ−1; {J})−
V (p1, · · · , pJ−2; {J}), or:

WJ−1(p1, · · · , pJ−1; {J}) =

= qJ−1vJ−1 + βqJ−1,−JvJ−1,−J −
J−2∑
j=1

qj,−(J−1)(vj,−(J−1) − pj)− (1− β)qJ,−(J−1)(vJ,−(J−1) − cJ)︸ ︷︷ ︸
K

−

− pJ−1 (qJ−1 + βqJ−1,−J)︸ ︷︷ ︸
y

.

By Lemma 1,

pJ−1 =

= β
qJ−1vJ−1 + βqJ−1,−JvJ−1,−J −

∑J−2
j=1 qj,−(J−1)(vj,−(J−1) − pj)− (1− β)qJ,−(J−1)(vJ,−(J−1) − cJ)

qJ−1 + βqJ−1,−J

+

+ (1− β)cJ−1.

It follows from equation (22) that:16

V (p1, · · · , pJ−2; {J−1, J}) =
J−2∑
j=1

[qj(vj−pj)+βqj,−J(vj,−J−pj)]+(1−β)qJ(vJ−cJ)+

+ qJ−1vJ−1 + βqJ−1,−JvJ−1,−J − pJ−1(qJ−1 + βqJ−1,−J).

Combining this with the formula for pJ−1 gives:

V (p1, · · · , pJ−2; {J − 1, J}) =

=
J−2∑
j=1

[qj(vj−pj)+β
J∑

k=J−1

qj,−k(vj,−k−pj)]+(1−β)
J∑

j=J−1

[qj(vj−cj)+β
J∑

k=J−1,k ̸=j

qj,−k(vj,−k−cj)].

Now assume that given the contracted prices {p1, · · · , pi}, and “future hospitals”
{i+ 1, · · · , J}, the insurer’s payoff is:

16This is simply writing separately the (J − 1)-th term from the first summation, leaving the first
J − 2 elements in the sum.
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V (p1, · · · , pi; {i+ 1, · · · , J}) =

=
i∑

j=1

[qj(vj−pj)+β

J∑
k=i+1

qj,−k(vj,−k−pj)]+(1−β)
J∑

j=i+1

[qj(vj−cj)+β

J∑
k=i+1,k ̸=j

qj,−k(vj,−k−cj)].

(23)

As we have shown above, this assumption is indeed correct given a fixed J and
i ∈ {J − 2, J − 1}. Basically, the same arguments can be applied given that the
hospital sequence is of length J ′ = J − 1: the formula still holds with J ′ replacing J ,
i = J ′ − 1, and also for i = J ′ − 2 provided that this is a positive integer. But, one
has to be careful in the application and note the role of our assumption that when
i drops out, all of its consumers that choose k ̸= i as their second choice leave the
network if the second choice drops out as well. This is what makes the application
work, and hence (23) implies:

V (p1, · · · , pi−1; {i+ 1, · · · , J}) =

=
i−1∑
j=1

[qj(vi − pj) + qj,−i(vj,−i − pj) + β
J∑

k=i+1

qj,−k(vj,−k − pj)]+

+ (1− β)
J∑

j=i+1

[qj(vj − cj) + β
J∑

k=i+1,k ̸=j

qj,−k(vj,−k − cj)].

Note that, like in the explanation that preceded the proof, each element in the
first summation has a direct benefit component and an additional component, when
in writing down these components we have invoked the abovementioned assumption
regarding what happens when i drops out.

Thus, the gain from bargaining with i is:

Wi(p1, · · · , pi; {i+1, · · · , J}) = V (p1, · · · , pi; {i+1, · · · , J})−V (p1, · · · , pi−1; {i+1, · · · , J}),

or:
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qi(vi−pi)+β

J∑
k=i+1

qi,−k(vi,−k−pi)−
i−1∑
j=1

qj,−i(vj,−i−pj)−(1−β)
J∑

j=i+1

qj,−i(vj,−i−cj) =

= qivi + β
J∑

k=i+1

qi,−kvi,−k −
i−1∑
j=1

qj,−i(vj,−i − pj)− (1− β)
J∑

j=i+1

qj,−i(vj,−i − cj)︸ ︷︷ ︸
K

−

− pi (qi + β

J∑
k=i+1

qi,−k)︸ ︷︷ ︸
y

.

Applying Lemma 1 we obtain:

pi = β
qivi + β

∑J
k=i+1 qi,−kvi,−k −

∑i−1
j=1 qj,−i(vj,−i − pj)− (1− β)

∑J
j=i+1 qj,−i(vj,−i − cj)

qi + β
∑J

k=i+1 qi,−k

+

+ (1− β)ci (24)

With (23) and (24) established, the proof is completed.

Proof of Proposition 3 : It follows from (23) that the insurer’s value, before he
approaches the first hospital in the canonical order, is:

V (∅; {1, · · · , J}) = (1− β)
J∑

j=1

[qj(vj − cj) + β
∑
k ̸=j

qj,−k(vj,−k − cj)],

and the RHS is independent of the order.

Proof of Proposition 4 : Consider J symmetric hospitals and let q ≡ qj, q̂ ≡ qj,−k,
v ≡ vj and v̂ ≡ vj,−k (recall that symmetry means independence of these quantities
of j and k). Let p∗i ≡ limβ→1pi, where pi is given by (24). Setting β = 1 at (24) gives:

p∗i =
qv + q̂v̂(J − i)

q + q̂(J − i)︸ ︷︷ ︸
A

+
q̂
∑i−1

j=1(p
∗
j − v̂)

q + q̂(J − i)︸ ︷︷ ︸
B

.

Claim 1: A is increasing in i.
Proof of Claim 1: The sign of ∂A

∂i
is the same as the sign of −q̂v̂[q + q̂(J − i)] +

q̂[qv + q̂v̂(J − i)], and the latter is positive if and only if v > v̂, which is true.

37



Claim 2: B is increasing in i.
Proof of Claim 2: It is enough to prove that p∗j > v̂. This is true for j = 1 in

virtue of v > v̂, and the fact that it is true for all j′ < j implies that it is true also
for j.
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