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1 Introduction

The discrete actions of firms are indicators of their expectations about profitability. Following this

logic, researchers use data on firm decisions such as entry, exit, or location choice to infer the effects

of market size, competition, and other factors on profitability. When multiple firms compete, their

strategic interaction should be modeled as a game, and their actions as the outcome of equilibrium

play. However, equilibrium outcomes depend on both firms’ payoffs and firms’ information when

they make their decision. Hence, modeling choices about firms’ information sets can affect how

the data are interpreted. Previous empirical studies have typically made strong informational

assumptions on firm information. In this article, I propose a more flexible approach which nests

many common informational assumptions. I show how this more flexible model can be used directly

for empirical work and how it can serve as a robustness check for stronger modeling assumptions.

I apply the model to study the impact of supercenters—large stores, such as Wal-Mart, that sell

both food and groceries—on the profitability of rural grocery stores. Supercenters’ effect on the

profitability of small grocers is a matter of significant public concern. A key feature of this setting

is that there is substantial unobserved heterogeneity in profitability across grocery stores; some

elements are publicly known to all players (e.g., ownership of a prime retail location), and some

are privately known only to that firm (e.g., managerial ability). Although it is common to abstract

away from one or the other of these sources of heterogeneity, I present a model that encompasses

both and allows inference on which source is dominant in the data. I also show how other methods

may lead the researcher to draw conclusions on the impact of supercenters that are not supported

under weaker informational assumptions.

Most empirical applications of discrete games fall into one of two frameworks. Under the com-

plete information framework, each agent’s payoff function is perfectly known to his opponents but

not the econometrician. In the incomplete information framework, each agent receives a private

shock that is unknown to both opponents and the econometrician. However, in many markets,

firms have some private information about their own payoffs—e.g., their contracts with interme-

diate goods suppliers are private—while at the same time, some determinants of firm demand are

commonly observed by the game’s players but not by the econometrician—e.g., brand quality of
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each firm, as in Berry et al. (1995). To see one implication of abstracting away from either public

or private unobservables, consider two firms contemplating entry into a market where only one

can operate profitably. If the firms are uncertain about each other’s actions, the market may go

unserved even though it is profitable for a single entrant. In contrast, a pure strategy complete

information model will predict that a firm will always enter the market whenever a monopolist

can make positive profits and will interpret neither firm entering as a sign that the market is

unprofitable even for a monopolist.

Of course, a key question is whether the data can be used to distinguish between information

structures. I will show that the degree of complete versus incomplete information is set identified.

For some intuition, assume the econometrician and all players observe a variable, such as a firm-

specific cost shifter, that directly affects the profits of only one firm in the market. Differences in

rival firms’ response to variation in this variable can be used to learn about the degree of complete

versus incomplete information. In a complete information game with pure strategies, firms know

their opponents’ actions when making their own entry decisions. In this case, variation in the

cost shifter should not directly affect rival firms’ actions because their information set includes

opponents’ true action. In contrast, when firms have incomplete information, rivals base their

decisions on expectations of opponents’ actions conditional on their information set rather than

their true action. In this case, variation in the cost shifter will directly impact rivals’ actions

because it shifts expectations about the entry of the initial firm. However, because the firms actual

action is not in rivals’ information sets, it cannot directly affect rivals’ actions. Hence, the relative

degree of correlation between the rival’s action, the firm’s action, and the firm’s cost shifter contains

information about the relationship between public and private information that can be exploited

by a structural model.

The flexible information structure I propose includes both publicly observed and privately known

structural errors for each firm. A complicating feature of this model, common to many discrete

game models, is that it admits multiple equilibria. I allow for a non-parametric equilibrium selection

mechanism which imposes no additional restrictions on outcomes beyond equilibrium. In particular,

the model allows for the possibility that multiple equilibria are played within the observed data.
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I examine identification of the model parameters under this framework. As in other models of

discrete-choice games, the parameters of player payoff functions are point identified if the model

covariates have sufficiently rich support. Although the information structure parameters are not

point identified, the extreme assumptions of pure complete and incomplete information are testable.

When the rich support assumption does not hold, as occurs in my application, all the model

parameters are set identified. I derive the identified set of the parameters based on the model

likelihood and show how to conduct inference on the model parameters whether or not the model

is point identified.

The empirical results illustrate that strong assumptions on the information structure have real

consequences for the analysis of games. For example, I find that the incomplete information model

is excluded from the confidence region implied by the full model, while a pure complete informa-

tion parameterization is inside the 95 percent confidence region of the full model. However, the

confidence region also includes parameterizations where over half the variance is generated by the

private information shock. Merely testing the extremes of pure complete and pure incomplete in-

formation would ignore this intermediate outcome. Moreover, although the pure strategy complete

information framework is not rejected, counterfactual analysis shows that bounds produced using

this framework are driven by assumptions on the information structure. In short, without knowing

the results of the flexible model, researchers who impose strong informational assumptions would

draw overly strong conclusions about policy relevant statistics.

By allowing for both a public and private structural error, I unify two strands of the literature

on discrete-choice games. Papers employing complete information games include Bjorn and Vuong

(1984); Bresnahan and Reiss (1990, 1991a,b); Berry (1992); Mazzeo (2002); Davis (2006); Tamer

(2003); Bajari et al. (2010); Beresteanu et al. (2008), and Ciliberto and Tamer (2009). Many

of these papers emphasize the existence of multiple equilibria and propose various approaches to

confront the problem. Recently, models of incomplete information, first proposed for empirical

work by Seim (2006), have been popular in part because of their relative tractability. Applications

and extensions of the incomplete information framework include Augereau et al. (2006); Sweeting

(2009); Aradillas-Lopez (2010); Aguirregabiria and Mira (2007); Bajari et al. (2007, 2010b); Paula
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and Tang (2012) and Vitorino (2012).

This article conducts sharp inference in a game with public and private unobservables without

strong assumptions on equilibrium selection. Tamer (2003) showed that complete information

games were identified under rich support assumptions. More recently, Galichon and Henry (2011)

have shown how to conduct sharp inference in complete information games with pure or mixed

strategies, but do not consider private information. In independent work, Beresteanu et al. (2011)

propose a general method of sharp inference whenever the predictions of the model can be described

as a convex set of moment conditions. In an appendix, they show the model of this article fits their

framework. In contrast to Beresteanu et al. (2011), I use the model likelihood to characterize the

identified set, then apply the sieve profile likelihood method proposed by Chen et al. (2011) to

conduct sharp inference.

The particular application also contributes to the growing literature on the effect of supercenters

on traditional grocery stores. Several studies have investigated how traditional grocery stores are

affected by supercenter entry (e.g., Singh et al., 2006; Hausman and Leibtag, 2007; Basker and

Noel, 2009; Chiou, 2009; Haltiwanger et al., 2010; Matsa, 2011; Beresteanu et al., 2010; Ellickson

and Grieco, 2013). Two things are distinctive about my empirical setting. First, I examine the

binary decision of whether or not to operate a firm within a given market, and abstract away from

decisions on how to operate that firm, such as determination of prices, product variety, product

quality, or location within a market.1 As consumers face a relatively small choice set when choosing

where to do their grocery shopping, the effect of firm openings and closings may have a much larger

impact on consumer welfare than competitive responses in product price or quality. Second, I focus

on rural grocery markets only. Due to the small number of stores in rural markets, these markets

are most impacted by closure of a grocery store. These choices serve to focus the analysis on the

commonly voiced complaint that supercenters harm consumers because they crowd out traditional

grocery stores.

Supercenters are commonly believed to hold a significant cost advantage over traditional grocery

1In a related paper Beresteanu et al. (2010) examine the opening and closing decisions of chain grocery stores
within grocery distribution markets. While they focus on large chain stores who compete over a wide area, this article
abstracts away from chain effects and focuses on small stores—many of which are single-store firms—in more isolated
rural areas.
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stores due to their scale and integrated distribution networks. However, the locational convenience

of a local grocery store may provide some insulation from competition with supercenters. The

magnitude of insulation is the key empirical question of this article. To answer this question, I use

data on entry and exit in rural grocery markets from 1998 to 2002 to estimate an entry game model

that allows for the calculation of expected long-run firm values.

Rural grocery markets have features of both complete information and incomplete information

models. There are differences across markets in local terrain, zoning regulations, local tastes, and

location availability, as well as differences among firms in the quality of their products and the level

of customer service which are observable to all players but not the econometrician. However, firms

and potential entrants also have some cost information that is kept private from their competitors

and the econometrician. For example, firms have private information regarding their management

expertise, outside opportunities, and the ease of integrating into a distribution network. By allowing

both a public and private error term for each player, my approach is able to account for both of

these features.

The empirical results illustrate that the role of supercenters in local grocery markets is less

dramatic than is commonly thought. Entry by a supercenter outside, but within 20 miles, of a local

monopolist’s market has a smaller impact on firm profits than entry by a local grocer. Although

supercenters appear to be associated with a decrease in stores’ expected profits, and appear to

lower the number of grocery stores in surrounding markets, the effects are small. I interpret this

as evidence that location and format-based differentiation partially insulates rural stores from

competition with supercenters. Indeed, when accounting for supercenters’ impact on opponent

behavior, I cannot reject the possibility that in equilibrium, supercenters increase the value of local

grocery monopolists through discouraging local entry. In conclusion, I find a small reaction in the

number of expected local stores to supercenter entry, particularly in monopoly markets. Although

I do not directly model consumer demand, the small crowding-out effect documented by the model

implies that welfare losses due to fewer small stores is unlikely to offset the welfare benefits of

supercenters through increased price competition and variety that are highlighted by Hausman and

Leibtag (2007) and other authors.
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The article is organized as follows. Section 2 introduces the model. Section 3 provides a

discussion and uses numerical examples to illustrate how the model incorporates public and private

information. In Section 4, I study the identification of the model. Section 5 shows how to conduct

inference. Section 6 introduces the empirical application and the data. The results of the application

of the full structural model and several counterfactual experiments are presented in Section 7. The

final section concludes by reiterating that allowing for flexible information structures improves the

credibility of empirical investigations of discrete games. Proofs are presented in Appendix A.

2 The Model

Consider a small market with two potential entrants i ∈ {1, 2}.2 The firms simultaneously choose

whether or not to be active, where yi = 1 if firm i is active and yi = 0 otherwise, so the observed

action profile is y = (y1, y2). In order to concentrate on the role of the information structure, I

abstract away from dynamics and assume firms make a one-shot long-run entry decision. Long run

payoffs are described by the following linear reduced form payoff function,

πi(yi, y−i;x, θ) =

 xiθiµ + y−ixiθiδ + εi + νi if yi = 1

0 if yi = 0
. (1)

The researcher observes x = (x1, x2) which may contain common components (e.g., population)

or firm-level components (e.g., firm age or earlier capital investment). The term xiθiµ captures

the impact of the firm and market characteristics on monopoly profits, whereas the term y−ixiθiδ

captures the competition effect of a second firm operating on the profits of firm i. The competition

effect may depend on observable firm and market characteristics. This specification is in line with

Bresnahan and Reiss (1990) who provide a simple model of entry to show that the impact of entry

may be decomposed into a fixed component and a component which varies with market size. The

parameters of the payoff functions are θp = (θ1µ, θ1δ, θ2µ, θ2δ).
3

2Extending the model to n players is conceptually straightforward but computationally burdensome due to the
need to compute all Bayesian Nash equilibria of the game to compute the likelihood function. Because my application
will involve rural markets with two players, I follow Bresnahan and Reiss (1991a) and Tamer (2003) in focusing on
two-player games.

3A simple extension would be to allow the competition effect to depend on observables or unobservables. The
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Each players’ payoff includes two components which are unobserved by the econometrician.

The public shocks, ε = (ε1, ε2), are jointly observed by both players in the game. I assume they

are bivariate normal with a common variance component σ2
ε and a correlation coefficient ρ. The

public shock captures the drivers of firm profit which are unobserved by the econometrician but

known to all players, (e.g., firm location, local tastes, etc.). In addition to the public shock, each

firm receives a private shock ν, to capture the impact of drivers of profit which are known only

to firm i (such as management capacity or opportunity costs) drawn from a normal distribution

with variance σ2
ν . Independence of νi conditional on x and ε is all that is necessary to ensure that

player i’s beliefs about equilibrium play are not dependent on νi and that optimal strategies are

monotone cutoffs in νi, however I assume unconditional independence for tractability within my

applied setting.4 Because only discrete outcomes are observed, a scale normalization is necessary

to identify the model. I normalize the total variance of the combined structural error, σ2
ε + σ2

ν to

be one. Therefore, the parameters of the information structure are θe = (ρ, σ2
ε ). The full set of

parameters to estimate are θ = (θp, θe).

Equilibrium

Players choose actions using equilibrium strategies. From the perspective of the players, who

observe ε, the model is a game of incomplete information as long as σν > 0.5 I confine the analysis

to pure strategy Bayesian Nash equilibria—a mapping from the firms’ private types ν to an action

profile y ∈ {0, 1}2.6

partial identification results presented in Section 4 and the inference technique presented in Section 5 trivially extend
to this approach. However, the point identification results in Section 4 require sign restrictions on the competition
effect which would be cumbersome with a more general competition effect.

4Most studies of incomplete information games assume that agents’ private types are independent, though there
are three exceptions. Aradillas-Lopez (2010) allows for correlation when beliefs are of the form P (y−i = 1|x, yi)
rather than P (y−i = 1|x, nui). Wan and Xu (2012) and Liu et al. (2012) develop identification results assuming
players’ strategies are monotone in νi.

5If σν = 0, then the game is of complete information, however the famous result of Harsanyi (1973) has shown
that firm’s mixed-strategy equilibrium actions are the limit of the sequence of pure-strategy Bayesian Nash equilibria
of incomplete information games as σν → 0. For expositional purposes, I concentrate on the σν > 0 case knowing
that I must take limits for σν = 0.

6Milgrom and Weber (1985) have shown that in incomplete information games such as the one considered here
where player types are conditionally independent, equilibrium must exist and every mixed strategy equilibrium has
a nearby “purification” pure strategy under which the agents distribution of observed behavior and expected payoffs
are identical.
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A firm’s optimal strategy is a cutoff in νi. Increasing νi unambiguously increases the expected

profits of entry (action 1), so a strategy in which the firm operates at ν ′i < ν ′′i but not at ν ′′i is

clearly sub-optimal. Therefore, an optimal strategy must be of the form,

si(νi, x, ε; θ) =

 1 if νi ≥ χi(ε, x; θ)

0 otherwise
,

where χi(x, ε; θ) is the entry cutoff for agent i. This is convenient because optimal strategies are

associated with their cutoffs, which are real numbers rather than functions. Players know the

distribution of νi, so their beliefs about their opponents probability of entry given their opponent’s

strategy are,

%i(χi, ε, x; θ) =

∫
si(νi, ε, x; θ)dΦ(νi) = 1− Φ

(
χi(ε, x; θ)

σν

)
(2)

Players select their cutoffs to optimize their expected payoff given their beliefs about the actions

of other players. Let χbi(χj , ε; θ) denote player i’s best response to player j playing the cutoff χj .

Player i’s best response is to adopt the cutoff where he is exactly indifferent between his two actions.

i.e, firm i’s best response is to operate when νi ≥ χbi(χj , ε; θ). The following equation defines agent

i’s best–response cutoff, χbi(·), as a function of opponent strategies and the publicly observed ε:

χbi(χj , ε, x; θ) = −(xiθiµ + %j(χj , ε; θ)xiθiδ + εi) (3)

Any joint set of cutoffs χ = (χ1, χ2) that satisfy (3) for both players represents an equilibrium.7

Because there is a simple one-to-one mapping between χi and %i, we can alternatively describe the

equilibrium in terms of either cutoffs or entry probabilities.

7If their were N players in the game, (3) would need to be modified to account for each opponents probability
of entry, this would result in a system of N equations and N unknowns which would jointly determine the Bayesian
Nash equilibrium of the game. In general, this problem is very computationally burdensome, although see Bajari
et al. (2010a) for a novel approach to computing all equilibria in large incomplete information games.
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Multiple Equilibria and Equilibrium Selection

Using the necessary and sufficient conditions derived in the previous section, I can characterize the

equilibrium set for the incomplete information game as the solution set to a system of nonlinear

equations.

E(ε, x, θ) = {χ : ∀i, χi = χbi(χ−i, ε, x; θ)}

Each equilibrium implies a multinomial distribution across action profiles. If the equilibrium

set were a singleton everywhere, a unique observable outcome distribution for the model could

be obtained by integrating over the public information shock ε. However, when there are multiple

equilibria, the model does not provide a unique distribution over actions, so the model is incomplete

(Tamer, 2003).

If more than one equilibrium exists, one is selected from E(ε, x, θ) on the basis of a public

coordination device that may depend on (ε, x, θ) but is independent of ν. This is a consequence

of the assumption that an equilibrium profile is played, not an additional assumption. The public

coordinating device must be independent of ν (like all other variables in the model) to prevent

information leakage, which would cause agents’ beliefs about other players to depend on private

information. Once players observe the device, it is clearly not optimal for any player to unilaterally

deviate to play any strategy other than the one selected.

A selection mechanism is a function that maps the space of strategy profiles to the probability

that a particular strategy profile is played. To be valid, a selection mechanism only plays strategy

profiles which are equilibria with positive probability.8

Definition 1. Let λ : R2 × X × Θ → [0, 1]Ē be a selection mechanism, where λe(ε, x, θ) is the

probability that strategy profile e is played when the game is defined by (ε, x, θ) and Ē represents

the maximum number of equilibria in the model.9 Let Λ be the set of valid selection mechanisms,

where a selection mechanism is valid if:

8Conditional on the publicly observed information, strategies can be described as a vector of cutoffs, such that in
a two–player game, the selection mechanism is a function from R2 to [0, 1].

9This number is generically finite. Moreover, when all errors are normal and there are two players Ē = 3. This
result can be shown using the fact that best-response functions for this game are translations of the normal distribution
function.
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1. If e 6∈ E(ε, x, θ), λe(ε, x, θ) = 0,

2.
∑

e∈E(ε,x,θ) λ
e(ε, x, θ) = 1.

In order to enforce validity constraints, the selection mechanism is a function of the model

parameters, θ. The equilibrium selection mechanism is an infinite dimensional parameter that

completes the model. In other words, given (θ, λ), the model predicts a unique probability dis-

tribution over actions and the model likelihood is well defined. If only θ is specified, then a set

of probability distributions are available and the model is only partially determined. The infer-

ence procedure proposed in Section 5 will maximize over this set to determine whether the model

parameters θ are consistent with the data.

3 Impact of Information Structure

The model combines the complete and incomplete information frameworks and nests many models

presented in the literature. After a scale normalization, the information structure is parameterized

by two variables: the relative variance of the publicly observed structural error, σ2
ε and the correla-

tion between firms’ public errors, ρ. The earliest entry games assumed that markets were subject to

a single profit shock that is homogeneous across firms and publicly known to the firms (Bresnahan

and Reiss, 1991b). The flexible model of this article nests this model when σ2
ε = 1 and ρ = 1. The

more general complete information model, which I take as the baseline complete information frame-

work, allows for firm-level heterogeneity in the error term. This is equivalent to assuming σ2
ε = 1

within my full model, but allowing ρ to vary.10 The pure incomplete information framework is

attained within the full model when σ2
ε = 0, eliminating the public structural error from the model.

A market-level public shock could be added to an incomplete information game, which would be

accomplished within my framework by assuming that ρ = 1 and allowing σε to vary.11 Before

10Most applications of the complete information model have restricted themselves to pure strategy equilibria (e.g.,
Berry, 1992; Mazzeo, 2002; Ciliberto and Tamer, 2009), so I also take the pure strategies assumption as part of the
complete information framework.

11Seim (2006) uses a two-stage game where potential entrants first decide whether to enter based on a publicly
observable market-level shock, and then decide on their location given the number of firms that entered. The location
decision is an incomplete information game. The two-stage structure is distinct from simply assuming ρ = 1, as in
the model presented here.
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turning to identification, it is important to understand how differences in the information structure

will impact observable outcomes. Section 3 examines how restricting the information structure can

affect empirical results. Section 3 illustrates how the information structure affects the measure of

markets that have multiple equilibria and the shape of the equilibrium correspondence.

The different effects of uncertainty and heterogeneity

The two structural shocks, ε and ν, affect strategies and observed action distributions in different

ways. The key difference is that ε2 affects the expectations of player 1 whereas ν2 does not.

Abstracting away from either shock simplifies the model in ways that will impact estimation and

policy analysis.

First consider the case where σε = 0, so only private information is present. Under the assump-

tions of the incomplete information framework, econometricians often assume they can directly

measure equilibrium strategies in the data by inverting conditional choice probabilities (e.g., Bajari

et al., 2010b).12 By assumption, all firms facing the same unobservables have the same expectations

about their opponents’ actions. If there is even a small amount of public information unobserved

by the econometrician, this estimate of strategies will bias the degree of player uncertainty up-

wards because the private error is the only source of unobserved heterogeneity in the model. This

necessarily biases firms’ expected profits, often an object of counterfactual interest, downwards.

Abstracting away from private information also imposes severe restrictions on the model’s im-

plications. Under the complete information framework, firms only have uncertainty about their

opponents if mixed strategy equilibria are being played. Most empirical work using complete in-

formation has also assumed pure strategy equilibria are played, meaning that firms are able to

completely avoid coordination failure and the resulting negative profit outcomes. As a result, the

pure strategy complete information model ignores the potential impact of coordination failure in

policy counterfactuals, even though, when incomplete information is present, changes in parameters

may in practice result in an increase or decrease in the probability of such a coordination failure.

12This requires the additional assumption that all markets with the same covariate choose to play the same equi-
librium.
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Relationship between Information Structure and Multiple Equilibria

The extent to which multiplicity causes an identification problem is related to the proportion of

markets with multiple equilibria. How does the amount of public versus private information affect

the propensity for multiple equilibria? To investigate this question I present a numerical example

calculating the region of multiplicity as the variance of the private error changes. For this exercise,

I consider a simplified symmetric version of the model with no covariates, so θµ and θδ are now

scalars, the profit function for firm i is simply,

πi(yi, y−i;x, θ) =

 θµ + y−iθδ + εi + νi if yi = 1

0 if yi = 0

Figure 1 presents a graph indicating the region of multiplicity in ε-space for the model where

θµ = 0.5 and θδ = −1. This figure can be thought of as a generalization of Figure 1 in Bresnahan

and Reiss (1991a) who present the region of multiplicity within the complete information framework.

The variance of the incomplete information shock, σν , is increasing across the four panels of the

figure. The distribution of ε establishes determine the density of markets across ε-space, but plays

no direct role in Figure 1 itself. Note that determining the proportion of markets with multiple

equilibria involves integrating over the space illustrated in Figure 1.13 The limit result of Harsanyi

(1973) is apparent: as σν becomes small, the region of multiplicity closely resembles the “box” of

multiplicity in the complete information game studied by Bresnahan and Reiss (1991a) and Tamer

(2003).

Figure 1 illustrates one particular parameterization of the model. Two striking observations

can be drawn from it. First, the size of the region of multiplicity tends to decrease as σν increases,

and eventually vanishes. Below I discuss why an increase in the degree of uncertainty is likely to

limit the scope of multiple equilibria.14 Second, multiplicity in the presence of uncertainty is much

13Figures 1 and 2 describe the changes in the equilibrium set from the prospective of players (who observe ε and
the payoff parameters). In the empirical model, the total variance of εi + νi is normalized to one (the econometrician
must integrate out ε); in these figures ε and the profit function parameters are taken as given. With this information,
the model provides distinct predictions for σν ∈ [0,∞).

14In a different, but similar, context, Morris and Shin (2000) have argued that adding incomplete information can
reduce the degree of multiplicity in a model. However, in general, adding uncertainty can increase or decrease the
number of equilibria depending on the game. Figure 2 provides an example where the number of equilibria rises from
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more likely when the two firms are similar in terms of their publicly observed propensity to enter

(e.g., markets near the line ε1 = ε2 continue to exhibit multiplicity even when σν is relatively high).

This result relates to the strategic substitutability of player actions when δ is negative. When the

game is of strategic complements, i.e., θδ > 0 the relationship is reversed, and multiplicity is most

prevalent along the ε1 = −ε2 line.15 Although these figures do not constitute a proof, the results

are stable across several different parameterizations of the model.

Intuition for the decrease in the size of the region of multiplicity can be found by considering

players’ probability of entry given ε and x. Figure 2 displays how equilibrium entry probabilities

vary with σν for four different public error outcomes. In subplots (a) and (b), firm 1 is profitable

regardless of firm 2’s action when σν = 0. For plots (c) and (d) there are multiple equilibria at

σν = 0 as firm 1’s profitability depends on firm 2’s action.

When σν increases from zero, entry probabilities can no longer be degenerate (although they

remain close to degenerate). This decrease causes firm 2 to adjust its expectations of firm 1 entry,

thus adjusting its own entry cutoff. Multiple equilibria may be sustained because 3 different sets

of cutoffs jointly solve the equilibrium conditions. The extent to which expectations affect firms’

optimal cutoffs is limited (expected entry probabilities are bounded between 0 and 1). As σν

becomes large, the probability that a firms optimal action is independent of its expectations (e.g.,

νi is such that the optimal action is to enter even if the opposing firm will enter with certainty)

increases. Hence, the set of rational strategies shrinks, forcing equilibrium strategies to be more

similar. In the limit as σν approaches infinity,16 whether or not the firm expects entry is irrelevant

to its entry probability. Given each firm has only one rationalizable entry probability there is of

course a unique equilibrium

The result that private information can dramatically reduce the amount of multiplicity within

the model suggests that—even without specifying the mixing distribution across equilibrium—the

1 to 3 and then falls back to 1 as the degree of uncertainty increases.
15Of course, when δ = 0, there is no strategic interaction and there is always a unique equilibrium.
16In the empirical model, the econometrician must integrate over ε and normalize the variance of εi+νi. In Figures

1 and 2, we have fixed ε and the payoff parameters, so σν can vary from 0 to ∞ (see Footnote 13). A change in σν , is
isomorphic to holding the variance of σν fixed, and multiplying the payoff parameters and ε by a constant c ∈ [0, 1).
This should make the limit argument clear: Taking σν → 1 is analogous to taking c → 0. When payoff parameters
and public shocks are all zero, it is trivial to see the game has a unique equilibrium.
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bounds on entry probabilities under a parameterization that admits a moderate amount of private

information may be much tighter than the bounds of a similar complete information parameteri-

zation. This is welcome news, as the generalization from complete information to the full model is

unlikely to exacerbate the identification issue related to multiplicity. However, because the model

is at the height of its flexibility under the complete information assumption—multiple equilibria is

most common and different equilibria allow the widest range of equilibrium entry probabilities—it

may be difficult to reject the complete information framework.

4 Identification

The full model nests the complete and incomplete information frameworks as endpoints of a con-

tinuum of possible information structures. I study identification under rich support assumptions

in Section 4. Tamer (2003) shows that the payoff function of a complete information game is point

identified if the covariates have a rich support, and I show that this result extends to the general

model. Although I am unable to establish point identification of the information structure itself,

I show that both the complete and incomplete information assumptions commonly used in the

literature are testable against the general framework.

Without assuming that some covariates have rich support, even the payoff parameters of the

model are only partially identified. In Section 4, I derive the identified set for the model parameters

without assuming a rich support.17 Even though the model is set identified, this may have little

practical effect on the results of the estimation if the identified set is small.18 Section 5 will provide

techniques to perform inference on the model and conduct counterfactual analysis using confidence

regions for the parameters of interest without assuming point identification.

17Bajari et al. (2011) study a similar model and argue that it may not be point–identified without parametric
restrictions on the selection mechanism. In Section 4, I explore what can be learned from the model without imposing
point identifying assumptions.

18See Honoré and Tamer (2006) for an illustration of this point in the context of a single–agent dynamic model.
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Identification with Rich Support Assumptions

In this section, I analyze the model under the assumption that the covariates have a rich support.

With this assumption, I first show that the parameters of firm payoff functions in the general

model are point identified. Intuitively, this is because in the limit, the econometrician can observe

markets where a firm’s probability of entry given its covariates is 1 or 0 regardless of the realization

of the publicly observed shock. In these cases, agents always take opponent entry as given, and the

problem reduces to a standard threshold crossing model. I then show that the implications of both

the complete information model and the incomplete information model are testable.

First, I state the basic assumptions.

Assumption 1. An econometrician observes a random sample of M markets {(ym, xm)}, m =

(1, . . . ,M), where ym = (y1m, y2m) are binary indicators of whether firm i operates in the market

and xm = (x1m, x2m) are vectors of covariates.19

Assumption 1 merely guarantees that we can consistently estimate the conditional probabilities

P (y|x).

Assumption 2. For i ∈ {1, 2}, there is of at least one covariate, x∗i that is not included in x−i,

and has positive density everywhere on R conditional on all other covariates. The coefficients of

the payoff function associated with x∗i satisfy |θ∗iµ| > |θ∗iδ|.

Rich support assumptions are a common tool in the identification of games. The assump-

tion used here is similar to that of Tamer (2003), who analyzes identification in the context of a

pure strategies complete information game. Theorem 1 generalizes the result of Tamer (2003) for

complete information games to the general model with an unspecified information structure.

Theorem 1. If Assumptions 1 and 2 hold, the parameters of the payoff function (θiµ, θiδ) for

i = 1, 2 are point identified.

The argument of the proof shows that the payoff parameters can be identified by observing

those markets where strategic interaction is not a factor. In particular, consider markets where

19I suppress the market subscript when it is clear from the context.
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x∗i is very low or very high. In such a markets, firm i’s decision is essentially known: regardless

of the outcome of εi or νi, she will enter with probability 1 or 0, depending on the effect of x∗i

on profits. In this case, both player −i and the econometrician know what firm i will do, and

the econometrician can use variation in x−i to estimate the payoff parameters of firm −i.20 The

procedure can be reversed to estimate the payoff parameters of firm i.

Notice that, in the markets which provide identification, one firm has a dominant strategy

to enter or not enter. Therefore, neither multiplicity of equilibria nor the information structure

are an obstacle to identification of the payoff parameters. However, for the same reason, there

is no way to use these markets to identify anything about either parameter of the information

structure. Intuitively, the rich support assumption aids identification of the payoff parameters

because it ensures that there are markets where one firm has a known dominant strategy (always

enter or never enter). However, precisely because one firm’s action is constant in these markets,

they provide no information about either the correlation between firm’s public errors, ρ, or the

relative amount of public versus private information, σ2
ε . Alternatively, for markets where neither

firm has a dominant strategy, it is impossible to rule out multiplicity of equilibria as a determining

factor for the observed correlation between firms’ actions. In this case, actions are a function of

both the information structure and the equilibrium selection mechanism.

Although the information structure cannot be point identified in general, it is possible to test

some commonly used restrictions on the information structure. The next theorem shows that

assumptions of the commonly used pure strategy complete information model can be tested against

the general model if the following assumption holds. To do so, the following assumption ensures

that there exists a pure strategy equilibrium under complete information.

Assumption 3. The competition effects xiθ1δ and xiθ2δ have the same sign for all x.

This assumption is necessary only when testing the complete information framework as it does

not make sense to test the pure strategies complete information model when it is incoherent and

does not admit a solution. An implication of this assumption is that θ∗iδ = 0 for the rich support

20The competition effect itself is identified by comparing the case where firm i’s dominant strategy is to always
enter (e.g., x∗i →∞) with the case where her dominant strategy is to never enter (x∗i → −∞).
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parameters, which is frequently assumed in empirical work. The full model allows for mixed strate-

gies under complete information, so this assumption is needed only for Theorem 2. Because θ1δ

and θ2δ are point identified, Assumption 3 is easy to test.

Theorem 2. If Assumptions 1 through 3 hold, the pure strategies complete information framework

implies testable restrictions on P (y|x).

The intuition of the proof is to find a set of restrictions which must hold under complete

information. Complete information models assume that all unobserved variation is observable to

all players, eliminating ν from the model while retaining ε. As Theorem 1 showed, the payoff

parameters are identified. Under the assumption of complete information the only parameters

remaining to be identified are the correlation of the public shock, ρ, and the selection mechanism

λ(·). The proof of Theorem 2 provides a set of equality restrictions for a sub-vector of P (y|x) which

involve ρ, but not λ(·), with which to test the pure strategies complete information assumption.

These restrictions rely on the fact that, under complete information, some outcomes only occur

when the equilibrium is unique, so λ(·) does not affect those outcomes’ probabilities. For example,

assume that duopoly profits are strictly lower than monopoly profits.21 Then, if duopoly is an

equilibrium, both firms are playing dominant strategies.22 By examining the probability of this

outcome at a particular value of x, there are multiple equations available to identify the single

coefficient, ρ. However, there are an infinite number of such restrictions (one for each observed

value of x). If they cannot all be jointly satisfied, the complete information assumption on the

information structure can be rejected.

The key feature of these equalities is that they do not depend on the selection mechanism,

λ, which is not identified. This is also the reason why the test must focus on pure strategies

equilibria. If mixed strategies were allowed, a (non-degenereate) mixed strategy from a game with

multiple equilibria would result in any outcome occurring with positive probability, introducing

λ into every outcome probability expression. Conveniently, almost all applications of complete

information games assume only pure strategy equilibria are played, so Theorem 2 is relevant to

21This is the most natural case, but Assumption 3 is slightly weaker.
22This theorem could easily be extended to a game with N players, but it would rely on “extreme” outcomes of all

entering or all not entering for to construct the test.
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empirical work.23

A similar test can be devised for the incomplete information model, the other commonly em-

ployed information structure.

Theorem 3. If Assumptions 1 and 2 hold, the pure incomplete information framework implies

testable restrictions on P (y|x).

Like the test of complete information, incomplete information framework can be tested by

concentrating on equality restrictions for P (y|x) that do not involve the selection mechanism. In

the incomplete information case, σε = 0 and ρ drops out of the model as there are no publicly

observed profit shocks. In this case, Theorem 1 identifies all parameters of the model except

λ(·). Therefore, the econometrician calculate the equilibrium set for every x and determine its

cardinality. Where there is a unique equilibrium, this exactly pins down P (y|x). If these equalities

do not hold across all x for which equilibrium is unique, the incomplete information framework

can be rejected. Furthermore, when there is a unique equilibrium, it must be that players’ actions

will be independent conditional on the other observables, as all variation is due to the private

shocks.24 The conditional independence requirement is very strict and, thus, it would appear that

the incomplete information model will be rejected in many cases, as happens in the empirical

analysis presented below.

The general model does not appear to be point identified. In essence, both of the above tests

focus on the degree of correlation of player actions conditional on x in situations where selection

can be ruled out as an explanation for that correlation.25 If σε ∈ (0, 1), there is no set of restrictions

that isolates changes in σε from changes in λ. This means that the reason for correlation patterns

in player actions may be attributed to either the selection mechanism or the degree of correlated

23The full model does allow for mixed strategies within the complete information context, so the test implied
by Theorem 2 is actually stronger (more likely to be rejected) than simply testing ρ = 0 in the full model (which
considers the complete information framework with or without mixed strategies).

24A recent paper on multiplicity in games of pure incomplete information uses this fact to develop a test for
multiplicity based on conditional independence (Paula and Tang, 2012). When multiple equilibria are present, they
further show that bounds restrictions are available.

25In the complete information case, we are directly testing the probability of (1,1) and (0,0) outcomes. In the
incomplete information test, we are able to test the entire probability distribution when equilibrium is unique, but a
key source of power in this test is that player actions are conditionally independent under the incomplete information
framework when equilibrium is unique.
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public information. In principle, one could use the model selection test developed by Shi (2011)

to directly compare the extreme cases of pure complete and incomplete information. However,

there is no reason to assume that only one type of heterogeneity is present. Instead, I make use of

the fact that the scope of multiplicity to affect the outcome distribution is bounded in two ways:

First, selection only plays a role when their are multiple equilibria, and for many parameter values,

the degree of multiplicity may be small. Second, even where there is multiplicity, the outcome

distribution must be a valid mixture between equilibria, limiting the extent to which the selection

mechanism can induce correlation across outcomes. The following section uses these observations

to show how to construct sharp bounds for the identified set of the richer model with both complete

and incomplete information shocks.

Identified Set

In empirical work, most datasets have only a limited amount of variation in their covariates; the rich

support assumption is often too strong. For this reason, I study identification under the following

assumption,

Assumption 4. For i = {1, 2}, the covariates xi ∈ X are discrete.

The discrete support assumption is the opposite extreme from the rich support assumption of

the previous section.26 Under this assumption, I derive the identified set of the model. In Section

5, I use this result to infer a confidence region for the model’s parameters.

For expositional simplicity I first consider in Section 4 identification in the context of an in-

complete information game where there is no public information shock. In Section 4, I extend

this result to derive the identified set for the general model with both complete and incomplete

information structural errors.

Identified Set with Only Incomplete Information

For this section only, assume that there is no public shock, so σε = 0 and νi ∼ N(0, 1) is independent

of x and i.i.d. across players. As εi = 0 under this assumption, I temporarily drop it from

26This section could easily be extended to continuous but bounded regressors.

19



the notation. Section 2 derived the necessary and sufficient condition equilibrium strategies and

entry probabilities for this model (the only difference is that ε is eliminated from the equilibrium

constraints). An equilibrium can be expressed either as a vector of cutoffs (χ1(x, θ), χ2(x, θ)) or

entry probabilities (%1(x, θ), %2(x, θ)), which are related through the one-to-one mapping (2). It

is more convenient to describe the equilibrium in terms of the entry probability profile %(x, θ).

As shown above, this model may have multiple equilibria; hence, the solution to the model is a

correspondence E(x, θ) that maps a set of covariates and the parameters to a finite set of equilibrium

strategy profiles. Let #E(x, θ) be the cardinality of this set and let e index an element of E(x, θ)

such that %e(x, θ) is a vector of choice probabilities related to equilibrium e.

Every equilibrium profile implies a multinomial distribution over outcomes. For a profile

e ∈ E(x, θ), let Ψ̃(y|x, θ, e) be the resulting outcome probabilities.27 The probability of observ-

ing outcome y if e is the selected equilibrium is,28

Ψ̃(y|x, θ, e) =
2∏
i=1

%ei (x, θ)
1[yi=1](1− %ei (x, θ))1[yi=0]. (4)

If equilibrium were unique, Ψ̃(y|x, θ, e) could be compared directly to the observed data P (y|x).

When equilibrium is not unique, our assumptions imply that the observed outcome distribution is

some mixture of equilibrium strategies according to a valid equilibrium selection mechanism λ(x, θ).

For a given selection mechanism, the probability of outcome y is:

Ψ(y|x, θ, λ) =
∑

e∈E(x,θ)

λe(x, θ)Ψ̃(y|x, θ, e). (5)

If λ were a parametric function and the model were identified, (θ, λ) could be jointly estimated

using the likelihood function implied by (5). Such a strategy is pursued in the complete information

context by Bajari et al. (2010). Another common assumption in the context of incomplete infor-

mation games is that the same equilibrium is always played in observationally equivalent markets.

However, economic theory tells us nothing about the selection of an equilibrium to play, so I do

27In this slight abuse of notation e represents the selection mechanism in which equilibrium e is always played.
28The independence of the agents’ decisions conditional on x is implied by the fact that the only structural error

within the incomplete information model is independent across players and privately observed.
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not wish to impose strong restrictions on the selection mechanism. Instead, I allow λ to be any

valid mixture across equilibria and derive the sharp identified set implied by the model. That is, I

use the model of the equilibrium correspondence given θ and the fact that I know that λe(x, θ) ≥ 0

and
∑

e∈E λ
e(x, θ) = 1 to derive the identified set.

Theorem 4. Given Assumptions 1 (random sample) and 4 (discrete covariates), the sharp iden-

tified set of θ for the incomplete information model (σε = 0) is,

ΘI =

 θ ∈ Θ : ∀y, x,∃λ̃ ∈ [0, 1]Ē s.t. P (y|x) = Ψ(y|x, θ, λ̃),∑
e∈E(x;θ) λ̃

e = 1

 (6)

Where Ē is a constant which represents the largest possible number of equilibria the model admits

for any x ∈ X and any θ ∈ Θ.29

To gain some intuition into how (6) restricts the identified set, consider testing whether θ is

the true parameter. For a given θ, I can solve the model for E(x, θ) for all x. Suppose, for a given

x′, E(x′, θ) is a singleton; the equilibrium mixing distribution is then degenerate and x′ provides

three equality restrictions with which to test the parameter θ (the fourth outcome probability

is redundant due to the adding up constraint). If there are three equilibria in E(x′, θ), then I

can construct a matrix of outcome probabilities, Ψ(y|x′, θ, e) where the rows represent different

outcomes y and the columns represent different equilibria e ∈ E(x′, θ). If this matrix has full rank,

this system of linear equations (5) restricts the set of admissible values for λ(x′, θ) to a singleton.

In other words, at most one λ(x′, θ) can satisfy (5) for all y, and it is only admissible if it represents

a valid selection mechanism (e.g., all its elements are positive). I can conduct such a test for all

x, if I observe any x such that a valid λ(x, θ) cannot be found, then θ must be excluded from the

identified set. Clearly, variation in x improves identification as the test of θ must be satisfied for

all x for θ to be in the identified set.

29The identified set could be written making use of the definition of an equilibrium selection mechanism defined in
Section 2, however I use simpler notation in (6) because it does not include the public information shock, ε. From
the index theorem it can be shown that the number of equilibria is generically finite. Under the assumptions of my
application, Ē = 3.
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Identified Set of the Full Model

I now return to the full model presented in Section 2 by allowing σε > 0 and re-introducing ε to

the notation. As a result, player strategies and equilibrium selection must both be modeled as

functions of the publicly observed error ε. Therefore, the selection mechanism is now potentially a

function of ε and, as a consequence, is an infinite dimensional parameter.

The observed distribution of outcomes is now,

Ψ(y|x, θ, λ(·)) =

∫ ∑
e∈E(ε,x,θ)

λe(ε, x, θ)Ψ̃(y|ε, x, θ, e)dF (ε; θ). (7)

The identified set can now be expressed as follows,

Theorem 5. Given assumptions 1 and 4, the sharp identified set of θ for the full model is,

ΘI = {θ ∈ Θ : ∀x ∈ X,∃λ ∈ Λ s.t. P (y|x) = Ψ(y|x, θ, λ)} , (8)

where,

Λ =

λ : ∀ε, x, θ,
∑

e∈E(ε,x,θ)

λe(ε, x, θ) = 1 and λe(ε, x, θ) ≥ 0

 . (9)

The function λ(·) is restricted to the set Λ; it must be a valid mixing distribution between

equilibria. Thus, meaningful inference can still be performed as long as the equilibrium sets actually

restrict player actions to a nontrivial set of entry probabilities for at least some observed markets.

Moreover, when there is a unique equilibrium with probability approaching one for markets with

observable covariates x given θ, then λ(ε, x, θ) is degenerate and the bounds for markets of type x are

equality restrictions. Suppose for some θ, I observe a market type that implies a unique equilibrium

for all values of ε.30 Then, for this x, the model would imply three equality restrictions on the data

with which to test θ, the same number supplied in the incomplete information case when equilibrium

for a market type is unique. The more such markets are observed, the more restrictions can be

collected to test the model parameters. Even if all market types exhibit multiple equilibria with

high probability, nontrivial restrictions on θ can still be found because the underlying equilibrium

30This would be the case if, for example, the vector of competitive effects was zero, θiδ = 0 .

22



sets will restrict firm entry probabilities.

5 Inference

My goal is to conduct inference on the structural parameters of the model, which include the pa-

rameters of the payoff functions and the information structure. Inference is challenging because

these parameters are set identified and the model includes an infinite dimensional nuisance pa-

rameter, the selection mechanism λ. In semi-parametric likelihood models such as this one, Chen

et al. (2011) have proposed inference based on the profiled sieve likelihood ratio. They show that,

although the distribution of the sieve profile likelihood ratio is complicated when the model is not

point identified, it can be consistently estimated using the weighted bootstrap procedure. Impor-

tantly, this consistency result holds even when the rate of convergence is non-standard (as would be

the case when λ is not point identified). This section shows how to apply their inference technique

to the flexible information structure entry model.

Likelihood Representation of the Identified Set

Assume the econometrician observes data from M independent markets {xm, ym}Mm=1, each of which

comes from a data–generating process defined by the true parameters (θ0, λ0). The true model is

complete in the sense that it includes both a well defined model and a valid equilibrium selection

mechanism, it maps onto a unique point in the space of outcome distributions of y given x. The

partial identification problem arises because there may be multiple parameters (θ′, λ′) that generate

the same conditional outcome distribution as (θ0, λ0).

The sample log-likelihood function can be written as:

LM (θ, λ) =
1

M

M∑
m=1

log Ψ(ym|xm, θ, λ). (10)

The limit of the log-likelihood function, L(θ, λ) = E[log Ψ(y|x, θ, λ)], will be maximized at

(θ0, λ0). However, the maximizer is not assumed to be unique, i.e., there may exist (θ′, λ′) such
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that L(θ0, λ0) = L(θ′, λ′).31 As I am primarily interested in θ0, I treat the selection mechanism λ as

a nuisance parameter and focus on θ as the object of interest. The identified set can be represented

as the set of maximizers of L.

ΘI = argsup
θ∈Θ

sup
λ∈Λ

L(θ, λ)

Therefore, to construct a confidence set for the identified set I will invert a test for inclusion in the

set of optimal points of the likelihood function. Because only points in the identified set optimize

L(·), this representation of the identified set is sharp.32

Sieve Profile Likelihood

Using LM (θ) directly for inference is infeasible because computation of LM (θ) involves an optimiza-

tion over the infinite dimensional selection mechanism and the integral within Ψ(y|x, θ, λ) does not

have a closed form. Although semi-parametric likelihood methods such as penalized maximum like-

lihood could be used if the model were point identified, they have not been shown to be consistent

when the model is partially identified.

The sieve profile likelihood function can be used to conduct inference on the identified set

by converting an infinite dimensional problem to a finite dimensional one. First, to numerically

approximate the integral over ε in the definition of Ψ(y|x, θ, λ), I evaluate the function at a finite

number of R points drawn from the distribution of ε:

ΨR(y|x, θ, λ) =
1

R

R∑
r=1

∑
e∈E(εr,x,θ)

λe(εr, x, θ)Ψ̃(y|ε, x, θ, e), (11)

The methods of Pakes and Pollard (1989) can be used to show that ΨR converges to Ψ uniformly in

Θ as R increases. I assume that the number of draws grows faster than the number of observations

so that the impact of simulation error is asymptotically negligible.33

31In the event that the maximum is unique, the model is point identified. In that case the inference procedure
presented in this section is still valid.

32Beresteanu et al. (2011) propose an alternative representation of the identified set based on the Aumann expec-
tation. An advantage of the likelihood based approach is that it has a clear interpretation under mis-specification of
inferring the set of parameters which minimize Kullback-Leibler convergence.

33Evaluation points may be selected either through simulation using random or pseudo-random sequences or through
deterministic sequences such as Halton sequences. In practice, I use Halton sequences, which have been shown to
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The sieve profiled likelihood replaces Ψ with ΨR and replaces the infinite dimensional parameter

λ with a finite dimensional sieve function. Let ΛR represent a series of sieve spaces that approximate

Λ as R→∞ (Chen, 2007). Then the sieve profiled likelihood is,

L̂M (θ) = max
λ∈ΛR

1

M

M∑
m=1

log ΨR(ym|xm, θ, λ). (12)

Notice that, because the integral over ε is approximated (11), λ is only evaluated at a finite set of

points.34 Therefore, any sieve function which interpolates over these points is numerically equiva-

lent. Although, the precise definition of the sieve space does not enter into the objective function

directly, for concreteness, the sieve approximation can be a spline where the knots are the R points

where λ is evaluated by ΨR.35 Under standard regularity conditions, L̂M converges uniformly to

to its expectation over Θ and that the optima of L̂M converge to points within the identified set

(see Chen et al., 2011, Theorem 3.1 and the remarks thereafter).

Computing L̂M involves an optimization over the set ΛR. However, in practice this is simply

a finite dimensional constrained optimization problem (the unknown variables are the weights

λe(εr, x, θ) at those εr for which there are multiple equilibria). Moreover, the objective function

is concave in λ and the constraints are linear. This form of optimization problem is tractable

for modern nonlinear optimization packages even with a very high–dimensional parameter space.

Appendix B provides more computational detail on the optimization step.

Likelihood Ratio Test and the Weighted Bootstrap

Inference can be done via a likelihood ratio test on the statistic,

LR(θ) = 2

(
max
θ′∈Θ

L̂M (θ′)− L̂M (θ)

)
.

have desirable fast-convergence properties vis-a-vis pseudo-random sequences in numerical simulations. For details
about Halton sequences, see Bhat (2001).

34Recall that x is a discrete variable. In principle the method could be extended to allow for continuous covariates
by introducing a sieve-space for (x, ε), although it would quickly become intractable due to the curse of dimensionality.

35If simple linear interpolation (which is a special case of a spline) is used, then the sieve approximation of λ will
be bounded between 0 and 1. Higher order splines may not preserve this property, however a more complicated sieve
space could be used.
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Under the null hypothesis, H0 : θ ∈ ΘI ,

lim
M→∞

P (LR(θ) ≤ cM (θ, 1− α)) ≥ 1− α, (13)

where cM (θ, 1−α) is the 1−α quantile of the distribution of LR(θ) under the null hypothesis that

θ = θ0. If this quantile were known, (13) could serve as a test of H0 that is consistent at level α.

To gain a feasible test, cM (θ, 1−α) must be replaced with a consistent estimator of the cutoff. The

weighted bootstrap offers one method for generating this estimator.

The weighted bootstrap uses B different weighted likelihood functions, which share the same

asymptotic distribution as the standard likelihood function, to approximate the distribution of the

likelihood ratio test statistic. The weighted likelihood function is defined as a function of weights

w = (w1, . . . , wM ), which are independent of the data and distributed such that E(wi) = 1 and

wi > 0.36

L̂M (θ, w) = max
λ∈Λ(θ)

1∑
wm

M∑
m=1

wm
[
log ΨR(ym|xm, θ, λ)

]
. (14)

The weighted likelihood ratio statistic is also defined analogously to its unweighted counterpart.

The key to the validity of the weighted bootstrap is the independence of the bootstrap weights

from the data. Independence insures that the asymptotic distribution of each weighted-likelihood

function is identical. Moreover, the asymptotic distribution of the standard log-likelihood is also

identical to each weighted bootstrap draw. Therefore, the centered quantiles of a collection of

weighted bootstrap estimators provides a consistent estimate of the quantiles of the asymptotic

distribution of the sieve profiled log-likelihood under the null hypothesis.

The resulting estimator of cM (θ, 1−α) is consistent and can be used to construct valid confidence

regions for θ. Using the weighted bootstrap to calculate ĉM (θ, 1 − α), I test each parameter θ for

inclusion in the identified set by replacing cM (θ, 1 − α) with ĉM (θ, 1 − α) in (13). Inverting this

36I draw from the standard exponential distribution to produce these weights, some experimentation using the
log-normal distribution produced very similar results.
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test, I collect all θ which are not rejected as my confidence region for the identified set.37

Θ̂CR = {θ : LR(θ) ≤ ĉM (θ, 1− α)}

The set Θ̂CR is not an estimate of the identified set, but rather the confidence region for θ, the

collection of points that are within the identified set with confidence level 1−α. The computational

details of this procedure are discussed in Appendix B.

6 Application: Supercenters and Rural Grocery Markets

The supercenter has dramatically altered the retail grocery industry and poses a new challenge to

grocery retailers as a never before seen competitor format. A supercenter combines a discount store,

a grocery store, and possibly several other retail services (pharmacy, tires, gas, etc.) into a single

outlet of roughly 175 thousand square feet.38 Several studies have examined the competitive effect

of supercenters on traditional grocery stores. Hausman and Leibtag (2007) use a national panel of

households to study the consumer-welfare effects of supercenters. They find that supercenters offer

consumers lower prices on products and induce other grocery retailers to lower their prices, thus

providing both direct and indirect positive effects on consumer welfare. Basker and Noel (2009)

analyze store-level price data from 175 US cities and find that Wal-Mart’s prices on average are 10

percent lower than those of its competitors and that Wal-Mart entry causes competitors to decrease

their prices by 1-1.2 percent. Singh et al. (2006) investigate a supercenter’s effect on grocery-store

revenue. Using a frequent-shopper database from a single grocery store before and after entry by a

Wal-Mart supercenter two miles away, they find that supercenter entry caused a 17 percent decline

in sales revenue. Matsa (2011) shows that traditional grocery stores improve their quality of service

by reducing the probability of items being out of stock in response to supercenter entry. Beresteanu

et al. (2010) have investigated how supercenters affect store openings and closings of chain retail

groceries competing in a wide geographic region.

37In practice, I use simulated annealing to select a sample of points in the parameter set to test. This procedure
is similar to the procedures of Chernozhukov et al. (2007) and Romano and Shaikh (2008) except that I use the
weighted bootstrap to determine ĉM (θ, 1− α).

38Singh et al. (2006) provide a full discussion of the supercenter format.
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This application will focus on store openings and closings in rural areas, which have received less

attention than urban markets. The impact of supercenters in rural areas is particularly important

due to the possible creation of “food deserts”—areas where consumers must travel several miles to

access groceries. In the popular press, the possibility of supercenters crowding out small grocery

stores in rural areas has received much attention.39 It is tempting to draw parallels between the

decline of single-store discounters and the future of traditional supermarkets.40 Using the methods

developed above, I will examine the impact of supercenters on the profitability and viability of

rural grocery store.

There are significant differences between rural grocery markets and their urban and suburban

counterparts. Whereas grocery retail in denser areas is usually dominated by large chain outlets

of more than 100 stores, stores in rural markets tend to be smaller and are more likely to be

independent. In my sample, the average store size is 18 thousand square feet compared to the

national average of 28 thousand square feet. In addition, 76 percent of stores in rural markets

are not vertically integrated. These may be either local chains or single store enterprises.41 These

differences suggest that key aspects of the supercenter format—large scale and a highly integrated

distribution network—may be less effective in rural settings. Alternatively, the success of big-box

discount stores in rural areas, particularly Wal-Mart, suggests that supercenters may induce rural

residents to travel long distances, reducing demand for stores in rural markets. Hence, degree of

substitutability between supercenters and rural grocers is an important empirical question.

To examine the impact of supercenters on grocery store values, I estimate a model of grocery

store entry and exit that will compare the impact of a supercenter in the vicinity of a rural market

on grocery store profits to the impact of a second competitor within the rural market. I assume

that the decision of the supercenter to locate near the market is exogenous. This assumption seems

reasonable in the rural grocery store setting because supercenters’ catchment areas are much larger

39For example, in 2004 the National Trust for Historic Preservation placed the entire state of Vermont in its register
of endangered sites because of Wal-Mart’s plans to begin supercenter expansion into the state. Vermont was already
home to standard Wal-Mart stores (“Preservationists call Vermont Endangered, by Wal-Mart,” New York Times,
May 25, 2004). For other examples see http://walmartwatch.com.

40Jia (2008) has found that the growth of chain discount stores (Wal-Mart and Kmart) explains 40 to 50 percent
of the decline in the number of small discount stores between 1978 and 1997.

41In the data many stores are listed as “independent” with no ownership data, so a precise breakdown between
single store owners and small chains is not available.
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than the rural markets under consideration. A supercenter’s location decision is likely to be driven

by county-level demographics, road locations, and the location of its own distribution centers,

rather than the degree of competition from small stores in the periphery of its catchment area.

The assumption that national–level firms’ decisions are exogenous to those of local stores greatly

simplifies the model and has been employed in other studies of strategic interaction between local

firms (Ackerberg and Gowrisankaran, 2006). I deal with the simultaneity between local stores’

entry decisions and profits by modeling the decisions of local grocers as a discrete game in which

they attempt to maximize store level profits.42

The application compares three specifications where only the information structure differs: as-

suming pure incomplete information, pure complete information, and flexible information structure

models. Very few local market characteristics are observed, so there is a substantial amount of

unobserved heterogeneity that is publicly known to all players but unobserved by the researcher.

Firms undoubtably condition on this information, such as road networks, city zoning laws, and

grocer characteristics, when considering entry. In addition, firms have private information about

their own prospects, such as managerial efficiency and opportunity costs, which generate uncer-

tainty about each other’s actions. As I show, abstracting away from either public or private shocks

will have implications for the model’s fit and the resulting counterfactual analysis.

Data

My primary data source is annual extracts from the Trade Dimension TDLinx database of all

grocery–store locations in the United States from 1995 to 2006.43 I supplement this data with

demographic information from the 2000 decennial US census. To define markets, I assume that a

local grocery store is in competition with other grocery stores located within the same Zip code.

Zip codes themselves are route assignments and not geographic areas, so the US Census bureau has

42This assumption abstracts away from chain effects (business-stealing and economies of scope) for those stores
that are part of chains, but as the majority of stores are not vertically integrated, and because rural markets are
much more thinly distributed than urban or suburban ones, chain effects should be minimal in this setting. Holmes
(2011) estimates chain effects in the context of a monopoly model.

43This data was graciously provided by Paul Ellickson. Various extracts from the Trade Dimensions database have
been used in several empirical studies investigating retail industries (Ellickson, 2007; Beresteanu et al., 2010; Holmes,
2011; Orhun, 2013).
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developed Zip Code Tabulation Areas (ZCTAs). Roughly speaking, ZCTAs map each census block

to the Zip code of the majority of its residents.44 I use the address information for each store to

link that store to a year-2000 ZCTA. ZCTAs provide a reasonable approximation of a grocery–store

catchment area in the markets under examination.45

I will study the entry and exit patterns within rural grocery markets between 1998 and 2002.

To be included in the dataset as a rural grocery market, a ZCTA must (i) have fewer than 15,000

people, (ii) have a population density of fewer than 750 people per square mile, (iii) have had

at least one grocery store in operation between 1994 and 2006, (iv) have had no more than two

grocery stores in simultaneous operation between 1994 and 2006, and (v) have no other grocery

store active within 5 miles of the ZCTA in 2000. The first two restrictions focus the study on

rural markets. Restrictions (iii) and (iv) on the number of stores active in the ZCTA potentially

introduces an endogenous selection problem, but is necessary to maintain computational feasibility

and to eliminate those ZCTAs that are not viable grocery markets (such as military sites).46 Using

a wider period (1994-2006) for selection than analysis (1998-2002) helps to reduce concern about

endogenous selection. This procedure includes zip codes where no activity occurs but it is feasible

that a store might open, as entry occurs in other years. It also avoids including markets where a

third potential entrant may be considering entry that does not occur during the analysis period but

is realized in earlier or later years. Because growing markets are likely to experience entry following

the analysis period, I interpret my results as pertaining to viable and stable monopoly and duopoly

markets. The final restriction (v) is meant to ensure that the markets are isolated economic units

that are not heavily influenced by entry and exit outside of the market boundaries.47

Table 1 displays summary statistics on the markets in the dataset. The expansion of super-

centers is apparent from the evolution of the distance from the markets to a supercenter over time.

44For a full description of the creation of ZCTAs, see US Census, http://www.census.gov/geo/ZCTA/zcta.html,
(accessed April 1, 2011).

45In their study of the loyalty card program of a grocery store located in a “small East Coast town,” Singh et al.
(2006) find that the average customer lives 3.5 miles from that store, whereas 78 percent of customers live within 5
miles of the store. A five–mile radius translates roughly to a catchment area of 80 square miles. The average land
area of a market as defined in this data set is 144 square miles.

46Including markets where three stores are open simultaneously would expand the dataset by nine percent. Includ-
ing these ZCTAs does not appear to affect the descriptive results presented in Section 6.

47The set of markets does not change significantly if we use years around 2000 for this restriction.
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Between 1998 and 2002, the median distance to a supercenter decreased by 10 miles. For the

purposes of this application, a market is considered to be in the vicinity of a supercenter if the

minimum distance to a supercenter is less than 20 miles in 2000.48

Preliminary Analysis

For descriptive purposes, I first present simple cross-sectional evidence from the data. Table 2

presents the distribution of active firms in each market in 2002. The first two columns condition

the distribution on whether (or not) there is a supercenter in the vicinity of the market. The table

indicates that the presence of a supercenter is associated with fewer duopolies and more monopolies

in the local market and only a very slight increase in the number of unserved markets. This is

consistent with the presence of a supercenter negatively affecting traditional grocery stores in small

markets. Table 3 examines the number of active stores in markets broken down by market size and

whether the market is in the vicinity of a supercenter. As expected, market size is strongly correlated

with the number of firms in the market. In comparison, the relationship between supercenters and

the distribution of active stores is less strong.

To demonstrate how entry and exit patterns change with competition once observable market

characteristics are controlled for, Tables 4 and 5 present probit regressions on the propensity of

firms to enter and exit, respectively. For consistency with the results in the following section, I

consider entry over a five year period.49 These regressions do not control for the simultaneous entry

and exit decisions of rival firms. Thus, the results should not be interpreted causally.50

Column I of Tables 4 and 5 show the results of a probit model on entry and exit (respectively)

controlling for only supercenter presence, log population, and presence of a competitor. Intuitively,

supercenter presence is associated with less entry and more exit, but its importance relative to

having a local competitor is small. Column II shows that this result is maintained when we add

48The results are qualitatively unchanged by using 1998 or 2002 as the base year, or by extending the supercenter
radius to 25 miles. I have also experimented with using two distance bands of 15 and 30 miles and found qualitatively
similar results.

49To be specific, entry is defined as a firm who was not present in 1998 being present in 2002, and exit is a firm
who was present in 1998 being absent in 2002.

50It is interesting to note that if one were to attempt to estimate a dynamic model of incomplete information using
these data (e.g., Aguirregabiria and Mira, 2007; Bajari et al., 2007), these regressions would be similar to the “first
stage” estimates of the policy function.
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a richer set of controls involving regional differences, local household income, and whether the

supercenter is a new opening itself. None of these controls are statistically significant and I exclude

them from the general model for reasons of parsimony.

Tables 4 and 5 include log population as a control in columns I and II. In the full model, I

discretize population in order to avoid adding an additional dimension to the sieve space for the

selection mechanism. The discretization also allows us to examine possible non-linearities in the

effect of (log) population. The specification includes dummies for whether the population is larger

than 3,000 or 6,000.51 The cutoffs for the dummies were chosen to approximate the one-third and

two-thirds quantiles of the data. Columns III and IV of Tables 4 and 5 replace log population with

this discretization. The discretization has little effect on the estimated coefficient of supercenter

presence or the existence of local competition. Using the dummies, we see that the relationship

between entry (and exit) and population is non-monotonic, but these results should not be given

a causal interpretation. This result suggests that there is indeed some endogeneity affecting these

preliminary results.

Finally, Column V of Tables 4 and 5 adds an interaction term between the presence of a

competitor and population. It appears that the degree of competition between firms varies with

market size. Therefore, I include an interaction between the competition effect and market size in

the structural model.

Bresnahan-Reiss Symmetric Firms Complete Information Model

Before turning to the full model in the following section, it is instructive to present the results

of the same data using a simpler specification of Bresnahan and Reiss (1991b). This model is

nested within the model of the following section with three major restrictions: There is no private

information shock, unobserved heterogeneity is perfectly correlated, and firms are homogeneous, so

51Both coefficients should be added to compute the total effect of population when the market is larger than 6,000
persons. Probit regressions such as those in Tables 4 and 5 are robust to slight changes in the population cutoffs.
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observed heterogeneity must be ignored. The latent profit function becomes,

πi(yi, y−i;xm, θ) =

 µ(xm) + y−iδ(xm) + εm if yi = 1

0 if yi = 0
. (15)

where δ and µ are linear functions of xm, which contains only market specific (not firm specific)

observable characteristics. Although this model admits multiple equilibria, Bresnahan and Reiss

(1991b) point out that it generates a unique prediction on the number of firms that enter, as

opposed to their identities. This allows the model to be estimated as an ordered probit where the

dependent variable is the number of firms in the market.

Table 6 presents two specifications of the Bresnahan-Reiss model. Column I includes only a

constant for the competition effect. Column II allows for interactions between market characteristics

and the competition effect. Comparing these results to the probits in Tables 4 and 5, the coefficients

on the population dummies are much more intuitive. This may be evidence of the importance of

controlling for endogeneity of rival decisions in a structural manner. Second, we see that the impact

of competition from local rivals appears to be much more severe than competition supercenters,

although both negatively affect profits. This relationship will also appear in the results of the full

model below. Finally, comparing the two columns, it appears that the competition affect does seem

to vary with market characteristics. It appears that the presence of a supercenter significantly

hardens competition between rivals, whereas rivalry is softer in the highest population markets.

Therefore, we allow the competition effect to vary with market characteristics in the following

section.

Because the Bresnahan-Reiss specification is nested within the full model of the following sec-

tion, it is easy to test the results of Table 6 against the full model. As the following section will

show, the restrictions of this model are rejected, which is not surprising given the importance of

firm entry costs to profitability (these must be excluded from the Bresnahan-Reiss model because it

assumes firms are homogeneous). Overall, these results provide some indication that the restrictions

needed to avoid the problem of multiple equilibria in entry games are not innocuous.
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7 Results from the Flexible Information Model

I now apply the full model described in Section 2 to data on entry and exit patterns of rural grocery

stores. I model the decision to operate over a five year period as a one shot simultaneous decision

where store managers receive profit from running the store and any sell-off value from the store

as a lump sum if they chose to operate. State variables at the market level are whether or not a

supercenter is present within 20 miles in 2000 and dummies for a population greater than 3,000 or

6,000 people. In principle, the effect of population could be modeled as a linear term, but I choose

not to do so given the non-monotonic response to population found in the preliminary estimates

(see Tables 4 and 5).52 Firm level state variables are whether or not the firm was operating in

1998, which indicates whether the firm must sink investment in order to begin operation. The

outcome variables are whether or not each firm was operating in 2002. I assume that opening a

store affects only a firm’s costs and not demand, so it can be used as an exclusion restriction. That

is, the existence of a rival firm in 1998 only affects firm i’s entry decision through its impact on

i’s expectation that he will compete in a duopoly.53 The model requires the strong assumption

that shocks for the game are uncorrelated with the determinants of the market structure prior to

1998.54 Profits of firm i conditional on entry can be written as,

πi(xim, y−im) = µ(xim) + y−imδ(xim) + νim + εim

Where µ(xim) is a function defining baseline monopoly profits and δ(xim) is a function defining the

competition effect.

52The discretization of population is computationally convenient for two reasons. First, discretization allows me to
solve the model once for many observations, speeding up computation of the likelihood. Second, if x were continuous,
the selection mechanism would have to be modeled with a K + 2 dimensional sieve where K is the number of
continuous dimensions of x.

53The exclusion restriction assumption is needed to provide identifying power; the methodology used here could be
applied without the exclusion restriction, but the identified set would expand accordingly. This suggests a robustness
test for the exclusion restriction assumption.

54This assumption will be violated if public shocks are persistent over time. However, the assumption that errors are
uncorrelated across time is common in empirical applications of games. Relaxing this assumption within a dynamic
setting is an avenue for future work.
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The baseline monopoly profit function is

µ(xim) = µ0 + µ11[Popm > 3k] + µ21[Popm > 6k]

+ µ31[Supercenterm < 20mi]− µ41[iInactive in 1998].

I will refer to µ4 as the entry cost; it measures the extra costs of opening a new grocery store.55

The effect of competition within the local market is captured by δ(·) which is also assumed to

be linear:

δ(xim) = δ0 + δ11[Popm > 3k] + δ21[Popm > 6k] + δ31[Supercenterm < 20mi].

This specification is in line with the model of Bresnahan and Reiss (1990) in which competition

can affect both variable profits and fixed costs (through entry barriers). The main parameters of

interest are the effect of supercenters on local grocery store profits and the competitive effect of

other local grocery stores on store profits.

Confidence Set for the Structural Parameters

For comparison purposes, I estimate the model under the incomplete information and complete

information assumptions that are commonly employed in the entry literature. For the complete

and incomplete information models, I impose point identifying assumptions and use traditional

inference methods.56 For the full model, I do not assume point identification and instead employ

the inference techniques described in Section 5. These techniques do not provide point estimates.

Instead, I report the 95 percent confidence sets for the identified set and a 95 percent confidence

region for the true parameter. The first covers the entire identified set at a confidence level of 95

percent, whereas the second (which is a subset of the first) covers the true parameter values with

55The effect on profits from opening a store are assumed to be due to construction and start-up costs, rather than
low demand for a new store when a rival is active.

56Specifically, for the complete information model, I assume that, when multiple equilibria are present, one of the
pure strategy equilibria is chosen with equal probability (the results are similar if I assume the equilibrium which
maximizes total profits is chosen); for the incomplete information model, I assume the data are generated by a single
equilibrium.
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a confidence level of 95 percent.

Table 7 presents the results.57 The full model nests both the complete and the incomplete

information frameworks. Therefore, we can use the full model to test the two restricted models by

checking to see whether any element in the confidence set of the full model satisfies the conditions

σ2
ε = 0 (incomplete information) or σ2

ε = 1 (complete information). As shown in Table 7, the

incomplete information model is rejected at the 0.05 level, whereas the complete information model

cannot be rejected. On the other hand, the model does not reject σ2
ε < .5, so more than half the

variance may be generated by a private error. Thus there is no empirical evidence for focusing

exclusively on the pure complete information model.

As in most discrete-choice models, it is difficult to interpret the parameter confidence intervals.

The counterfactual calculations presented in the next section clarify the implications of the model.

Nonetheless, the results indicate that the presence of a supercenter has a mild negative effect on the

value of a grocery store, although this is not statistically significant. The effect of local competition

appears to be stronger. The baseline effect of population on monopoly profits is monotonically

increasing (in contrast to the preliminary results of Tables 4 and 5, which did not control for

endogeneity of firm decisions), whereas population’s effect on competition is ambiguous. These

results are broadly is in line with the findings of the Bresnahan-Reiss style model in Table 6.58 In

contrast, the entry cost, which is not accounted for in Table 6 is large and positive. Overall, the

restrictions of the model in Table 6 are rejected.

Counterfactual Experiments

Using the confidence region for the identifiable parameter, I construct bounds for counterfactual

statistics, such as the change in firm value from changes in the market structure, or the expected

number of grocery stores in markets of different sizes. These counterfactuals are functions of both

the parameters of the model, θ, and the selection mechanism, λ (i.e., a counterfactual is some

57Because the inference procedure for the full model yields a joint confidence region, I report projections of this
region onto parameter axes. For this reason, Table 7 exaggerates the size of the confidence sets of the full model. Many
parameter values within the cartesian product of these intervals are outside the confidence set. The counterfactuals
in the next section operate using the true confidence region, a subset of the “box” reported in Table 7.

58Both models are scale normalized, so the relevant comparison is in ratios of coefficients rather than their absolute
value.
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function f(θ, λ)). I have derived a confidence region for θ but not λ. A very conservative method

for deriving bounds would be to pair all θ ∈ Θ̂CR with any valid selection mechanism to form the

range of values in the counterfactual experiments.

[
inf

θ∈Θ̂CR

inf
λ∈Λ(θ)

f(θ, λ), sup
θ∈Θ̂CR

sup
λ∈Λ(θ)

f(θ, λ)

]
(16)

This method yields extremely wide confidence intervals, and is unappealing because it admits

selection mechanisms which clearly do not fit the observed data. Moreover, because I can compute

the likelihood, LM (θ, λ), I know that many (θ, λ) pairs with θ ∈ Θ̂CR have a likelihood that is

far from the optimum. If λ were finite dimensional, inference on λ would make use of an inverted

likelihood ratio test, i.e,59

Λ̂(θ) =

{
λ ∈ Λ(θ) : 2

(
sup
θ′∈Θ

LM (θ′)− LM (θ, λ)

)
≤ κ̂M

}

Where κ̂M is a consistent estimate of κM , the 1 − α quantile of the distribution of the likelihood

ratio. Unfortunately, there is no known procedure to consistently approximate κM when λ is infinite

dimensional. Instead, I follow the following procedure to restrict the set of plausible selection

mechanisms for each θ ∈ Θ̂CR. The procedure stems from the observation that all (θ, λ) such

that θ that are not in the coverage set of ΘI (i.e., the set presented in Column 3 of Table 7),

or equivalently, those for which the profiled likelihood ratio is above ĉM , can be rejected with 95

percent confidence.60 Intuitively, two parameterizations with the same likelihood are equally likely,

so I propose to use γM ĉM , where γM > 1 as the basis for an ad hoc cutoff of for restricting the set

of selection mechanisms λ to pair with θ ∈ Θ̂CR when creating counterfactual confidence bounds.

This procedure will be consistent, but conservative, as long as γM ĉM ≥ κM holds as M →∞. One

way of interpreting this cutoff is that, for (θ, λ) with θ ∈ Θ̂CR, λ is excluded as a possible selection

mechanism only if θ would have been comfortably excluded from the confidence region if λ were

59Recall that LM (θ) is the profiled likelihood which already optimizes over λ. Of course, if λ were finite dimension,
inference on θ and λ could be performed jointly.

60See Appendix B.3 for details on the calculation of ĉM .
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its only valid selection mechanism. Therefore the bounds I present are,

[
inf

θ∈Θ̂CR

inf
λ∈Λ̄(θ)

f(θ, λ), sup
θ∈Θ̂CR

sup
λ∈Λ̄(θ)

f(θ, λ)

]
,

where Λ̄(θ) = {λ ∈ Λ(θ) : 2 (supθ′∈Θ LM (θ′)− LM (θ, λ)) ≤ γM ĉM}. In practice I use γM = 1.5, but

in experimentation I have found the results are very insensitive to changes in γM .61

Effects on Firm Valuations

This section investigates the effect of market structure on firm valuations. I use these counterfactu-

als to compare the results of the full model with those of the more restrictive complete information

model. The bounds for the incomplete information model are not included as that model is rejected

by the full model (effectively, its confidence set is empty).62 Firm valuations are the expected payoff

from operating the firm before shocks are revealed and the equilibrium is selected. The formula for

the expected value of the firm at the start of the period is:

E[πi(x; y)|x; θ, λ] = (17)∫ ∑
e∈E(x,ε)

λe(x, ε)
(
%ei (x, ε; θ)

(
µ(x)− %e−i(x, ε)δ(x) + E[νi|νi ≥ χei (x, ε)] + εi

))
dF (ε).

The object of interest is the relative change in firm value of moving a firm from state x to state x′,

i.e., E[πi(x
′;y)]−E[πi(x;y)]
E[πi(x;y)] .

First, I examine the effect of adding a supercenter in the vicinity of a market where none existed.

Bounds construct using the procedure describe above are presented in Table 8. The bounds for

the full model indicate that supercenters may decrease expected long-run firm profits by up to 24.6

percent but may also generate up to a 9.3 percent increase in profits.

The difference between the bounds of the complete information model and the full model are

substantial. First, consider the differences in upper bounds. The upper bound under the complete

61Of course, I cannot check all valid selection mechanisms. Instead I sample from the set of valid selection mech-
anisms within the sieve by (i) perturbing the selection mechanism which optimizes LM (θ) (as well as including the
unperturbed optimizer) (ii) drawing uniformly from the selection mechanism and (iii) testing the selection mechanisms
that generate the extreme points in (7).

62The confidence bound under the null that the model is correctly specified are available from the author.
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information model is substantially lower for all three market sizes. The difference is a result of

relaxing assumptions about the information structure. In the complete information framework,

firms can condition on their rival’s public shock and avoid negative outcomes, so the benefits from

less rival activity only appear on the margin. On the other hand, if the firms are uncertain about

rival entry, a reduction in entry probabilities reduces the chance of simultaneous entry resulting

in negative payoffs. Lowering the probability of negative profit outcomes can substantially benefit

firms by alleviating their coordination problem. The complete information model assumes away

this coordination problem, whereas the full model recognizes this potential benefit to supercenter

entry. In other words, because negative profit outcomes never occur under complete information

assumptions, the complete information model is unable to capture the full benefit of reducing rival

entry when firms are uncertain.

Furthermore, in duopoly markets, the lower bound of the supercenter effect for the full model

is substantially lower than the bound calculated using complete information assumptions. In the

complete information case, firms are able to avoid negative profit outcomes, so the decrease in profits

is due to both fewer profitable opportunities and less-positive profits given those opportunities. The

full model includes the possibility that the harsher environment resulting from supercenter entry

makes profits even more negative in the event of ex-post regret. This result is particularly stark if

firms begin the period as a duopoly, when both firms are more likely to choose to operate.

In sum, the pure strategy complete information model abstracts away from uncertainty about

opponents. This ignores the coordination problem that firms face when entry by both will result

in negative payoffs.63 Allowing for uncertainty between firms systematically widens the bounds on

the effect of supercenter entry.

Table 9 bounds the effect on firm value for a monopolist who experiences entry by a local

rival. In contrast to the effect of supercenter entry, this effect is unambiguously negative under

both the complete information framework and the full model. (This was not clear from the results

reported in Table 7 and gives an indication as to why the counterfactual results may be more useful

63The coordination problem can arise due to the play of mixed strategies; however, one could argue that mixed
strategies would be avoided in this case because they result in lower expected profits for both players. Moreover,
most empirical studies using the complete information model rule out mixed strategies by assumption.
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than the parameter bounds themselves.) However, the lower bound is much more severe for the

full model: a decrease in expected profit in the range of 46-60 percent compared to only a 23-28

percent loss when assuming complete information. The difference is again attributable to the fact

that firms with complete information are able to completely avoid situations that result in negative

profits. This also illustrates that relaxing the information restriction does not simply widen bounds

symmetrically.

Tables 8 and 9 give the impression that entry by a local grocery store is more harmful than

non-local supercenter entry. However, the bounds overlap and do not rule out the possibility that

monopolists may prefer facing local competition to competition from a supercenter. I use the model

to examine this question directly by computing bounds for the following statistic:

C ≡ E[πi|Monopoly, Supercenter]− E[πi|Duopoly,NoSupercenter]
E[πi|Monopoly,NoSupercenter]

.

The sign of C indicates whether a firm prefers to face a supercenter (C > 0) or local competi-

tion (C < 0); its magnitude measures the strength of preference scaled by monopolist firm value.

Bounds for C are presented in Table 10. For the full model, the sign is technically ambiguous; how-

ever, results are again heavily tilted towards preferring supercenter competition. If stores do prefer

local competition, the difference in profits is small I interpret this result as weak evidence that

differentiation on the basis of location and store type is effective at blunting the cost advantages of

supercenters over local grocery stores. Notably, if we impose the assumption of complete informa-

tion, the bounds are much tighter and indicate a significant preference for supercenter competition

over local competition.

To summarize, in this section I have compared bounds on counterfactuals under two nested

assumptions. The stricter assumption—pure strategy complete information—does plausibly fit the

data, but abstracts away from the possibility of uncertainty between firms. The weaker assumption

of the full model allows for uncertainty between firms. The intervals generated by the full model

are qualitatively different from those of the complete information model, and the reasons for these

differences is linked to the elimination of private information from the model.
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Availability of Grocery Stores

The previous subsection analyzed the impact of supercenter entry on the prospects of local firms.

This subsection presents the implications of supercenters on the number of local grocery stores

available to consumers. I focus exclusively on the full model, the results of the complete information

model are broadly consistent with these results.

For the purposes of this section, I assume that exogenous market characteristics, including the

presence of a supercenter, are constant over time, and that firms must pay the entry cost to be

active in period t only if they were inactive in the previous period.64 Furthermore, I make the

strong assumption that both public and private shocks are iid across five year periods. With this

assumption, the structural model produces a Markov chain that governs transitions over the number

of stores in the market. Table 11 presents the confidence bounds on the stationary distribution of

this Markov chain by market type using the full model.65 Across market sizes, it appears that the

presence of a supercenter shifts up the bounds on the proportion of unserved markets, and shifts

down the bounds on the proportion of markets served by two local firms. Although the bounds are

wide, the effect of supercenters on the long–run distribution of local grocery stores appears mild.

Comparing these results with the observed distribution of stores across markets (Table 3), I

find that the 2000 distribution of stores is well within the bounds of the steady state distribution

predicted by the model. Note that this need not be the case: the results reported in Table 11 are

derived from entry and exit patterns, whereas those in Table 3 come from the static distribution of

stores. This result is consistent with the view that a major shift in the availability of local grocery

stores is not underway.

Some policymakers have expressed concern that supercenters may be causing a large increase in

the number of markets that are unserved by local grocery stores, spawning “food deserts.” Table

11 provides upper bounds on the proportion of unserved markets. Market size is a much more

important determinant of unserved markets than the presence of a supercenter, and the majority

64This assumption is not needed for estimation. I estimate firms’ expectations of their long–run profits based on
their entry and exit actions. Firms’ expectations of how the exogenous variables will change in the future is accounted
for in their expectations of long–run profits.

65The bounds from the complete information model are not presented in this section as they do not provide any
additional insights beyond the results of the full model.
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of markets will be served by at least one grocery store in large and medium markets. In small

markets, where the proportion of unserved markets is already high (Table 3), the proportion of

unserved markets can only be bound below two-thirds. It appears that the smallest markets are

barely able to meet the minimum scale for even a single grocery store. The presence of a supercenter

exacerbates the problem, but restrictions on supercenters would not be likely to remove the threat

of small markets becoming “food deserts.”

Table 12 presents bounds on the expected number of stores in each market type as well as

bounds on the “supercenter effect”—the difference in the expected number of stores (in percentage

terms) in similar sized markets with and without a supercenter. These results indicate a downward

shift in the bounds on the number of local stores available to consumers as a result of a nearby

supercenter, although the bounds overlap. The interval for the supercenter effect is mostly negative.

This echoes the descriptive results from Section 6 and other indicators in this section that the effect

of supercenter entry mildly reduces the number of local stores. However, it seems unlikely that this

decrease in the expected number of local–grocery–store options offsets the benefits from adding

the supercenter option to consumers’ choice sets. Of course, a full analysis of consumer welfare is

outside the scope of this paper.

8 Conclusion

Earlier studies of discrete games have assumed that unobserved factors of the game are either

publicly observed by all players (complete information) or privately observed by individual players

(incomplete information). I provide a more general model that nests these assumptions and pa-

rameterizes the extent to which unobservable components of a firm’s profits are publicly known.

Using this model, information in the data can be used to make inference on the extent to which

variation in firm actions is due to public or private information. The usual assumptions made by

both the pure complete and pure incomplete information frameworks are testable. By using infer-

ence techniques that avoid point identification assumptions, I construct bounds on model statistics

without imposing ad hoc assumptions on the information structure or equilibrium selection.

I apply the model to examine the effect of supercenters on rural grocery markets. The growth
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of the supercenter format has led industry observers to inquire how supercenters alter the grocery

market, and whether they are likely to displace local grocery stores. For grocery store owners, I

find that entry by a supercenter is far less detrimental than entry by a local competitor, and that

if supercenter entry is effective at suppressing the probability of entry by a local challenger, it may

actually increase long-run profits for incumbents. This outcome is the product of a reasonable eco-

nomic model that fits the data well, but is ruled out by assumption within the complete information

framework.

The empirical results show that placing strong assumptions on the information structure of

a game has real consequences. The incomplete information framework is rejected when tested

against the general model. Although the complete information framework is not rejected, bounds

produced using this framework are driven by assumptions on the information structure. This

could lead the researcher to make overly strong conclusions about policy relevant statistics of

interest. By incorporating both public and private information into a single model and using

partial identification inference techniques, it is possible to develop meaningful confidence bounds

for many statistics of interest under relatively weak informational assumptions.
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A Proofs

Theorem 1 If Assumptions 1 and 2 hold, then the parameters of the payoff function (θiµ, θiδ) are
point identified.

Proof. The proof is similar to Theorem 1 of Tamer (2003). Without loss of generality consider
player 1’s action, the argument for player 2 is symmetric. Player 1’s best response function is,

χi(χ−i, ε, x) = −(xiθiµ + εi) + ρ2(χ−i, ε, x)θiδ (18)

Where ρ2 is player i’s rational belief about the rival firm’s probability of entry based on its given
strategy χ−i. This probability is derived according to (2).

Assume without loss of generality that θ∗2µ > 0.66 Then limx∗2→−∞ P (y2 = 1|x, ε) = limx∗2→−∞ P (yi =
1|x) = 0, because from (18), χ2 →∞ as x∗2 →∞ when holding all other parameters fixed regardless
of firms 1’s action (because the |θ∗2µ| > |θ∗2δ| by Assumption 2). By the Bayesian Nash equilibrium
assumption, ρ2(∞, ε; θ) = 0, the probability of firm 1 entering is,

lim
x∗2→−∞

P (y1 = 1|x) = E[P (ν ≥ χ1(χ2, ε, x))] = P (εi + νi ≥ −(x1θ1µ)).

By our scale assumption on the distribution of εi+νi, this is a linear probit model, so the vector θiµ is
identified.67 To identify the parameters of θδ, note that, limx∗2→∞ P (y2 = 1|x, ε) = limx∗i→∞ P (y2 =
1|x) = 1, so we have

lim
x∗2→∞

P (y1 = 1|x) = P (εi + νi ≥ −(x1(θ1µ + θ1δ))

As θ1µ is already identified by the preceding argument, we treat these parameters as known, the
result is a linear probit model with a constant adjustment, so θiδ is identified as well.

Theorem 2 If Assumptions 1 through 3 hold, the assumptions of the pure strategies complete
information framework are testable.

Proof. The complete information assumption fixes σ2
ε at 1, so the only remaining parameters to

identify are ρ and λ(·). Given the pure strategies assumption, player 1 knows y2 with certainty
when making his own entry decision (and vice versa). Given this, if we observe either both firms
entering or neither firms entering, we can infer that the strategy was generated by a model with a
unique equilibrium.68

P (y1 = 1, y2 = 1, x; θ) =

∫ ∞
ε1=−(x1θ1µ+θ1δ)

∫ ∞
ε2=−(x2θ2µ+θ1δ)

dF (ε1, ε2; ρ)

Because the parameters of the objective function are identified by Theorem 1, ρ is the only
free parameter on the right hand side. Because this expression is monotonically increasing in ρ, ρ
is identified by observing the left hand side for a single market. After identifying ρ from a single
market, P (y1 = 1, y2 = 1|x) is known for all x, as it is independent of the selection mechanism.

66The same argument with signs reversed can be carried out if θ∗2µ < 0, and Assumption 2 guarantees θ∗2µ 6= 0.
67The argument is symmetric for player 2.
68This argument assumes that θiδ < 0 for both firms, a similar argument holds with the sign reversed.
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Therefore can test the assumptions of the pure strategy complete information model by checking
to see whether P (y1 = 1, y2 = 1|x) implied by the pure strategies complete information model is
consistent with the observed distribution across all markets.

Theorem 3 If Assumptions 1 and 2 hold, the assumptions of the pure incomplete information
framework are testable.

Proof. Under the assumptions for the incomplete information model, σε = 0 by assumption, so ρ
drops out of the model, and εi = 0 with probability one. As (θ∗iµ, θiµ, θiδ) are point identified accord-
ing to Theorem 1, E(0, x, θ) is identified for every x. We can use the equilibrium set to construct
constraints on P (y|x) for all x, if #E(0, x, θ) = 1 these are equality constrains, if #E(0, x, θ) > 1
they are inequality constraints. The inequality constraints are non-trivial because under the in-
complete information assumption firms take both actions with positive probability for all x. We
can test the model by verifying these restrictions hold for all x.

Theorem 4 Given assumptions 1 and 4, the sharp identified set of θ for the incomplete information
model is,

ΘI =

{
θ ∈ Θ : ∀y, x,∃λ̃ ∈ [0, 1]Ē s.t. P (y|x) = Ψ(y|x, θ, λ̃),∑

e∈E(x;θ) λ̃
e = 1

}
Where Ē is a constant which represents the largest possible number of equilibria the model admits
for any x ∈ X and any θ ∈ Θ.

Proof. We have assumed that P (y|x) is observed for identification purposes via Assumption 1. For
any θ, we treat λ as a restricted nuisance parameter. Let P be the space of possible conditional
probability distributions, as x and y are discrete, P is a vector space. Given θ we can construct a
set in P of outcome distributions that are consistent with the model.

P(θ) =


P (·|·) ∈ P : ∀x, y, ∃λ̃ ∈ [0, 1]Ē s.t.:

P (y|x) = Ψ(y|x, θ, λ̃),∑
e∈E(x;θ) λ̃

e = 1

 . (19)

The conditional outcome vector P (y|x) is a point in this space. By definition, θ ∈ ΘI if and only
if P (y|x) ∈ P(θ), the restrictions the statement of the theorem can be rewritten as {θ : P (y|x) ∈
P(θ)}.

Theorem 5 Given assumptions 1 and 4, the sharp identified set of θ for the full model is,

ΘI = {θ ∈ Θ : ∀x ∈ X,∃λ ∈ Λ(θ) s.t. P (y|x) = Ψ(y|x, θ, λ)} ,

where,

Λ(θ) =

λ : ∀ε, x,
∑

e∈E(ε,x,θ)

λe(ε.x) = 1 and λe(ε, x) > 0

 .

Proof. The proof of this theorem is a trivial extension of the argument from Theorem 4.
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B Computational Appendix

Computing the Equilibrium Set

In this section I present a method to approximate all equilibrium in the set E(ε, x, θ). For simplicity,
we suppress covariates in this section and treat µ and δ as constants. Moreover, because we deal
with each ε draw independently, the notation of this appendix suppresses the dependence of the
strategies (χ1, χ2) and beliefs (ρ1, ρ2) on x and ε.

The set of equilibria is equivalent to the set of all solutions to the system of equations,

χ1 = −(µ1(θ) + ε1) + ρ2(χ2; θ)δ1(θ) (20)

χ2 = −(µ2(θ) + ε2) + ρ1(χ1; θ)δ2(θ)

Where χi is a cutoff strategy for entry and ρi is agent i’s probability of entry based given he is
using the strategy χi.

ρi(χ; θ) =

∫
1[νi ≥ χ]dF (νi; θ)

We need only search for equilibrium strategies within the set of rationalizable strategies. Because
agents beliefs about the probability of entry are bounded between 0 and 1, the set of rationalizable
strategies for player i is,

Ψi = [min (−(µi(θ) + εi),−(µi(θ) + εi) + δi(θ)) ,max (−(µi(θ) + εi),−(µi(θ) + εi) + δi(θ))]

Equilibrium strategies must be rationalizable. Therefore, we can confine our search for equilibrium
cutoffs for player i to Ψi. We then search for equilibria using the following algorithm:

1. For a grid of points χp1 ∈ Ψ1:

(a) Compute player 2’s best response given player 1 uses the strategy χp1,

χbp2 = −(µ2(θ) + ε2) + ρ1(χp1; θ)δ2(θ).

(b) Compute player 1’s best response given player 2 uses the strategy χbp2

χbp1 = −(µ1(θ) + ε1) + ρ2(χbp2 ; θ)δ1(θ).

(c) Compute zp = χp1 − χ
bp
1 .

2. Wherever zp and zp+1 are opposite signs, use Newton’s method starting (χb1, χ
bp
2 ) to solve

(20).

3. If |zp| < |zp−1| and |zp| < |zp+1|, use Newton’s method starting (χb1, χ
bp
2 ) to solve (20).

If (χb1, χ
bp
2 ) is an equilibrium, then zp = 0. The vector of points {zp} is a discretization of a

continuous function. The algorithm locates equilibria by searching near the zeros of this function,
which is much more efficient than simple multi-starting. Finding all equilibria depends on using a
fine enough discretization of the rationalizable set. Clearly, there is a tradeoff between accuracy
and computation time. The results of this paper are robust to changing the coarseness of the
discretization of the rationalizable set.
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Computation of the Sieve Profiled Likelihood Function

This appendix provides details on the optimization problem which is used to calculate the pro-
filed likelihood LM (θ). Given a value for λ, the maximand LM (θ, λ) is calculated using standard
numerical simulation techniques. We can write the maximand as,

LM (θ, λ) =
1

M

M∑
i=1

[
log(ΨR(yi|xi, θ, λ))

]
where,

ΨR(y|x, θ, λ) =
1

R

R∑
r=1

∑
e∈E(ε,x,θ)

λe(εr, x)Ψ̃(yi|εr, x, θ, e)f(εr; θ)

Where we have selected R sample points over which to approximate the integral over ε. These
sample points could be chosen in several different ways, including monte carlo simulation. I have
chosen to use Halton sequences to approximate this integral.

Our task is to profile λ out of this function. To accomplish this, we need to find a ”most
favorable” selection mechanism given θ. Let λθ be any element of the set of maximizers of the
likelihood for a fixed θ.

λθ ∈ argmax
λ()

LM (θ, λ(·))

It is clear that all λ which are equal on the sample points chosen for the numerical approximation
of PR evaluate to the same likelihood, so λθ is not be uniquely defined. However, maximizing λ
over the set of sample points will yield an appropriate value for the purpose of approximating L(θ).

For each sample point I calculate the equilibrium set E(εr, x, θ). For each equilibirum, I assign
each an index e, and a mixing probability λr,x,e. We then optimize the following constarined
maximization problem over the vector of mixing probabilities,

λRθ = argmax
λ∈[0,1]R×X×Ē

N∑
i=1

∑
y∈Y

1[yi = y] log

R−1
R∑
r=1

∑
e∈E(ε,xi,θ)

λr,xi,eΨ̃(y|εr, xi, θ, e)f(εr; θ)

 (21)

s.t. ∀r, x :
∑

e∈E(εr,x,θ)

λr,x,e = 1

Although high-dimensional and somewhat daunting in appearance, the optimization problem in
(21) is a concave objective with linear constraints, and can be handled by modern nonlinear solvers
for R in the hundreds. Furthermore, whenever E(εr, x, θ) is unique, the selection mechanism is
degenerate and there is no need to optimize over the selection mechanism. This leads to a dramatic
reduction in the number of unknowns in this problem in many cases. Efficient computation of
(21) is important because this problem must be solved for each θ we wish to test during simulated
annealing.

We can now evaluate the profiled likelihood statistic for each θ by plugging λRθ back into the
full likelihood function.

LM (θ) = LM (θ, λRθ )
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Weighted Bootstrap Algorithm for Confidence Sets

This appendix describes the implementation of the weighted bootstrap to derive the confidence
region for the identified set and the confidence region for the identifiable parameter. Let the
likelihood function be defined as,

LM (θ) = max
λ∈ΛR

1

M

M∑
i=1

log(ΨR(yi|xi, θ, λ)),

we have described how to compute this function above. The weighted likelihood function is defined
analogously with the addition of a vector of weights, w = (w1, . . . , wn),

LM (θ, w) = max
λ∈ΛR

1∑
wi

M∑
i=1

wi log(ΨR(yi|xi, θ, λ)).

Where the weighs satisfy E[wbi ] = 1, V [wbi ] = 1 and are independent of the data. Given these
assumptions, the weighted likelihood will have the same asymptotic distribution as the “standard”
likelihood Chen et al. (2011). Bootstrapping the weighted likelihood amounts to evaluating the
function for different sets of weights. The quantiles found by bootstrapping the weighted likeli-
hood will approximate the quantiles of the asymptotic distribution of the likelihood under the null
hypothesis.

The likelihood ratio statistic and its weighted bootstrap analogue are defined,

LR(θ) = max
θ′

LM (θ′)− LM (θ),

LR(θ, w) = max
θ′

LM (θ′, w)− LM (θ, w).

The weighted likelihood and the unweighted likelihood have the same asymptotic distribution, so
we can use the quantiles of {LR(θ, wb)}Bb=1 to estimate the cutoff for the confidence region. Ideally,
we would use all points in Θ for this procedure, however this is clearly computationally infeasible.
Instead we will use simulated annealing to select a large number of points which adequately cover
the parameter space near its maximum. Some tuning of the jump distance and the temperature of
the simulated annealing algorithm may be needed to ensure adequate coverage.

1. From multiple (around 40) start points, run the simulated annealing algorithm on LR(·) for
many (over 10,000) iterations each. Save all points.

2. Define the starting cutoff c0 and the starting set of points S0 = {θ : LR(θ) ≤ c0}. In practice
we will use the set of points S0 which are in S0 and have been visited by the simulated
annealing. The starting cutoff must be decreasing in n at a slow enough rate a la CHT. An
extreme alternative is to let c0 =∞, which implies S0 = Θ and S is simply all points visited
by simulated annealing.

3. For each point in S0, compute {LR(·, wb)} note that we only need to solve the model 1 time
for each θ and then can compute the likelihood for each weight sample.

4. Iterate the following until |c`−1 − c`| < ε.

52



(a) Compute:

c`+1 = inf{x :
1

B

B∑
b=1

1[max
θ∈S`

(
LR(θ, wb)− LR(θ)

)
≤ x] ≥ 1− α}.

(b) Define:
S`+1 = {θ ∈ S` : LR(θ) ≤ c`+1}.

5. Let ĉM (1− α) = c`, Θ̂I = {θ : LR(θ) ≤ ĉM (1− α)}. Use S` to construct confidence intervals
for statistics of interest. Such confidence intervals are valid assuming the number of simulated
annealing iterations goes to ∞ with n.

To find the confidence set for the identifiable parameter we individually test the hypothesis that
θ ∈ ΘI for each point. The collection of all points that are not rejected is denoted Θ̄, the confidence
set for the identifiable parameter. It is easy to see that any point in Θ̄ must also be in Θ̂I–if we
cannot reject that θ is the true parameter, we clearly cannot exclude it from our coverage region
for the identified set. Therefore, we can restrict the hypothesis test to all points in Θ̂I . The test is
conduct for a given θ by computing,

ĉn(θ, 1− α) = inf{x :
1

B

B∑
b=1

1[LR(θ, wb)− LR(θ) ≤ x] ≥ 1− α}.

The hypothesis is rejected if LR(θ) > c(θ). So the confidence set for the identifiable parameter is,

Θ̄ = {θ ∈ Θ̂CR : LR(θ) ≤ ĉn(θ, 1− α)}.

Again, we use the set of points visited by simulated annealing which pass the above condition to
construct confidence intervals for the statistics of interest.
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Figure 1: Multiplicity in a 2-player game correspondence E(·, θ) varying the degree of incomplete
information by panel. There are multiple equilibria in the shaded region, and one equilibrium in
the unshaded region. Axes correspond to (ε1, ε2). For both players θµ = 0.5 and θδ = −1. The
region of multiplicity for the limiting complete information game is the box [−0.5, 0.5]× [−0.5, 0.5]
(cf. Bresnahan and Reiss, 1991a, Figure 1).
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(c) ε1 = −.01, ε2 = 0
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(d) ε1 = −.10, ε2 = 0

Figure 2: Equilibrium entry probability of player 1 in a symmetric two-player entry game as the
level of uncertainty changes. For both players, µi = δi = 1.
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Quantiles Mean Std Dev
0.25 0.50 0.75

Population 2,610 4,327 6,700 4,981.04 3,109.26
Mean Household Income 38,013 43,135 50,139 45,526.28 12,235.60
Distance to Supercenter

1998 17.15 30.67 77.81 76.51 113.22
2000 14.64 24.12 49.40 53.74 80.41
2002 13.28 20.79 33.67 33.55 39.12

Market in South 0.35 0.47
Market in West 0.14 0.34

Table 1: Summary statistics of market characteristics. Mean distance to a supercenter excludes
outliers more than 500 miles from a supercenter. These are accounted for in the quantile calculation.
Total number of markets is 4,803.
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Active Firms Supercenter Overall
Yes No

0 22.41 23.09 22.82
1 65.37 60.50 62.46
2 12.22 16.41 14.72

N 1,932 2,871 4,803

Table 2: Distribution (of the number) of active firms in 2002 by whether the market was within 20
miles of a supercenter in 2000 (percent).

57



Percent Near Active Firms
Supercenter 0 1 2

Pop 0-3k 25.91
Supercenter 48.16 49.47 2.07
No supercenter 43.66 53.62 2.72

Pop 3-6k 42.47
Supercenter 22.99 70.78 6.23
No supercenter 13.90 71.62 14.48

Pop 6k+ 51.73
Supercenter 9.02 67.78 23.20
No supercenter 4.97 54.97 40.06

Table 3: Distribution (of the number) of active firms in 2002 by market size and whether or not a
supercenter was located within 20 miles in 2000 (percent).
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I II III IV V

Supercenter within 20 mi -0.0834 -0.0311 -0.0897 -0.0429 -0.0862
(0.0493) (0.0565) (0.0496) (0.0569) (0.0498)

Supercenter entry 1998-2000 -0.1454 -0.1392
(0.0882) (0.0883)

Log Population 0.3358 0.3308
(0.0352) (0.0371)

Log Household Income -0.0405 -0.0694
(0.1037) (0.1032)

South Region 0.0523 0.0415
(0.0544) (0.0546)

West Region 0.1207 0.0828
(0.0687) (0.0692)

Pop over 3k -0.4248 -0.4222 -0.3680
(0.0595) (0.0613) (0.0979)

Pop over 6k 0.6992 0.6955 0.5648
(0.0657) (0.0695) (0.0904)

Competitor Active in 1998 -0.5076 -0.5011 -0.5047 -0.4999 -0.7406
(0.0509) (0.0512) (0.0514) (0.0517) (0.1051)

(Pop > 3k)&(Comp. in 98) -0.0735
(0.1230)

(Pop > 6k)&(Comp in 98) 0.3653
(0.1406)

Log-Likelihood -1758.17 -1755.10 -1748.36 -1746.05 -1744.46
N 5217 5217 5217 5217 5217

Table 4: Probit regressions on firm entry for five year period from 1998 to 2002. These results do
not control for endogeneity of decisions between small grocery stores.
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I II III IV V

Supercenter within 20 mi 0.1463 0.1501 0.1500 0.1558 0.1567
(0.0508) (0.0575) (0.0511) (0.0578) (0.0512)

Supercenter entry 1998-2000 -0.1314 -0.1298
(0.0939) (0.0939)

Log Population -0.3043 -0.3136
(0.0387) (0.0395)

Log Household Income 0.0932 0.0894
(0.1136) (0.1146)

South Region 0.0160 0.0160
(0.0556) (0.0557)

West Region -0.1044 -0.0923
(0.0778) (0.0777)

Pop over 3k 0.1941 0.2027 0.1989
(0.0586) (0.0597) (0.0786)

Pop over 6k -0.5199 -0.5351 -0.5779
(0.0711) (0.0730) (0.0841)

In Duopoly in 1998 0.2377 0.2394 0.2348 0.2366 -0.0915
(0.0547) (0.0550) (0.0557) (0.0561) (0.1663)

(Pop > 3k)&(Doup. in 98) 0.0214
(0.1176)

(Pop > 6k)&(Doup. in 98) 0.3609
(0.1852)

Log-Likelihood -1642.94 -1640.53 -1646.84 -1644.69 -1644.53
N 4389 4389 4389 4389 4389

Table 5: Probit regressions on firm exit for five year period between 1998 and 2002. These results
do not control for endogeneity of decisions between small grocery stores.
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I II

Monopoly Profits, µ(·)
Constant 0.219 0.196

(0.033) (0.035)
1[Pop > 3k] 0.827 0.845

(0.043) (0.049)
1[Pop > 6k] 0.704 0.574

(0.043) (0.060)
1[Supercenter < 20mi] -0.336 -0.255

(0.036) (0.045)
Competition Effect, δ(·)

Constant -2.101 -2.054
(0.033) (0.073)

1[Pop > 3k] -0.059
(0.088)

1[Pop > 6k] 0.227
(0.074)

1[Supercenter < 20mi] -0.187
(0.063)

Log-Likelihood -3846.3 -3838.3
N 4803 4803

Table 6: Results from a Bresnahan-Reiss complete information model with symmetric firms.
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Effect of Supercenter Entry
on Firm Value (Percent)

Complete Info. Full Model

Pop 0-3k
Monopoly [-10.7 2.5] [-18.7 9.3]
Duopoly [-10.6 -2.4] [-18.8 -0.1]

Pop 3k-6k
Monopoly [-9.6 2.3] [-16.0 7.6]
Duopoly [-11.0 -3.1] [-22.1 0.7]

Pop 6k+
Monopoly [-8.2 1.6] [-12.7 5.9]
Duopoly [-10.8 -3.2] [-24.6 1.2]

Table 8: Effect on firm value of grocery store if Supercenter enters within 20 miles (percent), 95
percent confidence intervals for the complete information model and the full model.
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Effect of Local Entry
on Firm Value (Percent)

Complete Info. Full Model

Pop 0-3k
Supercenter [-28.1 -22.4] [-59.9 -8.3]
No Supercenter [-26.2 -18.7] [-50.8 -10.7]

Pop 3k-6k
Supercenter [-27.3 -14.5] [-47.8 -10.1]
No Supercenter [-24.9 -21.1] [-58.1 -3.6]

Pop 6k+
Supercenter [-24.5 -13.8] [-55.9 -9.2]
No Supercenter [-23.0 -10.2] [-46.0 -6.3]

Table 9: Effect on a monopolist grocery store’s firm value when another grocery store enters its
market (percent); 95 percent confidence intervals.
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Difference in Store Value Following
Supercenter versus Local Entry

Complete Info. Full Model

Pop 0-3k [12.6 25.6] [-5.0 43.4]
Pop 3k-6k [10.4 20.1] [-2.1 45.2]
Pop 6k+ [6.4 19.9] [-1.0 39.1]

Table 10: Difference between the value of a store following supercenter entry versus local grocery
store entry as a percentage of the monopolist store value. A positive number implies that a mo-
nopolist would prefer supercenter entry to local-grocery-store entry, a negative number implies the
opposite; 95 percent confidence intervals.
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Number of Grocery Stores
0 1 2

Pop 0-3k
Supercenter [30.3 62.1] [37.0 68.8] [0.2 4.6]
No Supercenter [26.3 51.7] [45.4 70.9] [0.5 8.2]

Pop 3k-6k
Supercenter [14.1 34.9] [59.2 79.0] [2.2 12.2]
No Supercenter [10.0 28.0] [63.0 81.2] [5.7 21.2]

Pop 6k+
Supercenter [2.1 14.1] [59.6 82.5] [11.4 34.0]
No Supercenter [1.2 8.0] [40.8 73.6] [22.8 57.5]

Table 11: Stationary distribution of the number of firms in a market by market type (percent); 95
percent confidence intervals.
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Expected Number of Supercenter Effect
Grocery Stores (Percent)

Pop 0-3k
Supercenter [0.39 0.71]

[-36.9 15.4]
No Supercenter [0.50 0.81]

Pop 3k-6k
Supercenter [0.69 0.96]

[-25.1 0.6]
No Supercenter [0.81 1.08]

Pop 6k+
Supercenter [0.99 1.28]

[-27.9 1.0]
No Supercenter [1.17 1.56]

Table 12: Expected number of stores by market size and supercenter presence and the effect of
adding a supercenter to a market on the expected number of stores; 95 percent confidence intervals.
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