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Appendices

FOR ONLINE PUBLICATION (Cosar,Grieco,Tintelnot 2014)

Appendix A Gravity in Wind Turbine Trade

In order to get a rough comparison of the relevance of trade costs within the wind turbine industry
versus common benchmarks in the literature, we estimate a gravity equation using the 6-digit HS
2007 product category that is associated with the industry. The precise goal is to compare distance
and contiguity coefficients to the values obtained in the literature using aggregate data.

Gravity variables come from the CEPII dataset (http://www.cepii.fr/CEPII/en/bdd_
modele/bdd.asp) made available by Head and Mayer (2013). USITC (2009) helps us to identify
the product code associated with wind turbines: “wind-powered generating sets” with the HS 2007
code 8502.31. We obtain bilateral trade data on this product from WITS database (http://wits.
worldbank.org/wits/). Data is available for the period 2002-2010. The estimation equation takes
the form

lnXsd = ψs + ψd + α · Contigsd + β · ln(distancesd) + Γ · Zsd + ǫsd, (1)

where the dependent variable is the natural logarithm of trade volume Xsd between source country
s and destination country d averaged over 2002-2010. (ψs, ψd) are importer-exporter fixed effects.
The variable Contigsd equals one if the two countries are contiguous. Zsd includes a set of standard
controls such as common language, common currency, bilateral tariffs, regional or bilateral free
trade agreement, and colonial links. We estimate this equation with OLS using data on country
pairs with positive trade flows Xsd > 0. Table 1 reports the results.

Table 1: Gravity of Wind Turbine Trade

Contiguity
0.585∗

(0.306)

Distance
-1.027∗∗∗

(0.199)
Country fixed effects Yes
Observations 1366
R2 0.594

Notes: Standard errors in parenthesis
∗ significance at 10 percent level
∗∗∗ significance at 1 percent level.

The results indicate that the industry is remarkably representative in terms of distance and
contiguity. The elasticity of trade flows with respect to distance is −1.027, which is consistent
with the typical unit elasticity reported by the literature for aggregate trade flows. The contiguity
coefficient is 0.585. In a survey of 159 papers from the gravity literature, Head and Mayer (2013)
report summary statistics on the coefficients of most frequently used variables. The mean distance
elasticity and contiguity coefficient across structural gravity estimates are -1.1 and 0.66, respec-
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tively (Table 4 in their paper). This gives us some assurance that the results of the paper are not
specific to an industry that is itself an outlier in terms the effects of distance and contiguity.

Appendix B Data

B.1 Description

The register of Danish wind turbines is publicly available from the Danish Energy Agency
(http://www.ens.dk/en-US/Info/FactsAndFigures/Energy_statistics_and_indicators/
OverviewOfTheEnergySector/RegisterOfWindTurbines/Sider/Forside.aspx). This dataset
spans the entire universe of Danish turbine installations since 1977 until the most recent
month. The data on German installations is purchased from the private consulting company
Betreiber-Datenbasis (http://www.btrdb.de/) and spans the period 1982-2005. Before 1987,
however, both countries have low levels of annual installations: in Germany, there are only 48
wind farms in operation as of 1987, whereas after this year, there are at least 50 new projects
annually.

Typically, several turbines are part of one wind farm project. The German data comes
with project identifiers. We aggregate Danish turbines into projects using the information on
installation dates, cadastral and local authority numbers. Specifically, turbines installed in the
same year, by the same manufacturer, under the same cadastral and local authority number are
assigned to the same project. The fine level of disaggregation provided by cadastral and local
authority numbers minimize the measurement error.

Data on manufacturer locations was hand-collected from firms’ websites and contacts in the
industry. As of 1995 and 1996, seven out of ten large firms we use for our analysis were operating
a single plant. Bonus, Vestas and Nordex had secondary production facilities. For these firms, we
use the headquarters. Our industry contacts verified that these headquarters were also primary
production locations with the majority of value-added. Equipped with the coordinates of projects
and production locations, we calculated road distances as of June 2011 using the Google Maps API
(http://code.google.com/apis/maps/). Therefore, our road distances reflect the most recent
road network. For developed countries such as Germany and Denmark, the error introduced by the
change in road networks over time is negligible. Using direct great-circle distances in estimation
generated virtually the same results.

B.2 Project Characteristics

Table 2, and Figures 1-3 provide some summary statistics on project characteristics in the two
countries. Differences in distance to producers reflect heterogeneity in country size. Evidently,
key observable characteristics such as electricity generating capacity, tower height and rotor di-
ameter are remarkably similar in the two markets, ruling out product differentiation as a source
of market segmentation. Slightly higher tower heights in Germany are due to lower wind speeds
in southern regions. In such an environment, larger turbines are needed to attain the same ca-
pacity. What matters for this paper is that wind conditions do not change at the border. The
European wind atlas available at the following link verifies that this is the case. (http://www.
wind-energy-the-facts.org/en/appendix/appendix-a.html).
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Table 2: Summary Statistics of Projects

Denmark Germany

Capacity (KW)

Mean 475.81 472.59

St. Dev. 207.93 175.98

Median 600 500

10th percentile 225 225

90th percentile 600 600

Tower height (m)

Mean 38.34 49

St. Dev. 7.96 8.64

Median 40 50

10th percentile 30 40

90th percentile 46 65

Rotor diameter (m)

Mean 37.43 38.51

St. Dev. 9.13 7.02

Median 42 40.3

10th percentile 29 29.5

90th percentile 44 44

Distance to the border (km)

Mean 159.38 296.88

St. Dev. 72.33 162.23

Median 169.45 295.12

10th percentile 51.59 90.68

90th percentile 242.58 509.20

Distance to producers* (km)

Mean 154.02 366.58

St. Dev. 31.26 100.19

Median 169.45 344

10th percentile 117.52 258.20

90th percentile 192.65 510.78

Number of turbines per project
Mean 1.94 1.95

St. Dev. 2.07 2.52

1977-1981 76 0

1982-1987 362 48

Number of projects
1988-1994 1030 1452

1995-1996 296 929

1997-2005 1373 4148

Notes: Summary statistics of product characteristics in the first six panels are from the
sub-sample of projects installed in 1995-1996. Onshore projects only.
(*): Average distance to firms with positive sales in that market.

B.3 List Prices

The survey of the German wind turbine market published by Interessenverband Windkraft Bin-
nenland (various years) provides information on list prices for various turbine models as advertised
by producers. These prices, however, are only suggestive and do not reflect project-specific final
transaction prices. We use this information to verify the validity of our constant-returns-to-scale
assumption. Figure 4 plots the per kilowatt price of various models against their total kilowatt
capacity. Evidently, there are increasing returns up to 200 KWs. Beyond that range, per unit
prices are mostly flat. As Figure 3 shows, a majority of the turbines installed in this period were
in the 400-600 KW range.

B.4 Regression Discontinuity Design

We estimate the following linear probability model in Subsection 2.2:
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yi = α0 +
k=3∑

k=1

αk · distance
k
i + γ ·Germanyi +

k=3∑

k=1

ηk · distance
k
i ·Germanyi + ǫi. (2)

The dependent variable is yi = 1 if the producer of project i is one of the five large Danish
firms, and zero otherwise. The variable distancei is the distance to the border. The effect of
the border is picked up by the dummy variable Germanyi that equals one if the project is in
Germany, and zero otherwise. The parameter of interest is γ. Table 3 reports the results for
various specifications estimated with robust standard errors. The first column is the baseline
featuring a cubic polynomial and interaction terms which allow distance to have a different effect
on the two sides of the border. The border coefficient γ is significantly negative and of comparable
magnitude in all four regressions.

Table 3: RDD Results for the 1995-1996 Period

Baseline Cubic Linear Linear
Specification No interactions No interaction

Germany (γ) -0.305∗ -0.338∗∗∗ -0.411∗∗∗ -0.423∗∗∗

(0.126) (0.07) (0.066) (0.047)

Constant (α0) 0.925∗∗∗ 0.807∗∗∗ 0.851∗∗∗ 0.862∗∗∗

(0.112) (0.049) (0.059) (0.027)

Distance

α1 0.0014 -6.7e-04∗∗∗ -4.77e-04∗∗ -3.91e-04∗∗∗

(0.0026) (1.84e-04) (3.41e-04) (8.32e-05)

α2 1.17e-05 3.37e-07
(1.8e-04) (5.24e-07)

α3 2.04e-08 2.55e-10
(3.61e-08) (7.17e-10)

Interactions

η1 -0.004 -8.92e-05
(0.0027) (3.52e-04)

η2 -4.94e-06
(1.81e-05)

η3 -2.59e-08
(3.61e-08)

Observations 1226 1226 1226 1226
Adjusted R2 0.284 0.279 0.278 0.2718

Notes: Standard errors in parentheses. ∗,∗∗,∗∗∗: significance at 10, 5, 1 percent levels.

Appendix C Additonal Results and Robustness Checks

C.1 Firm Profits

Table 4 presents the level of operating profits under the baseline and two counterfactual scenarios,
calculated according to (5). While the scale of these profit figures is arbitrary (similar to fj in
Table 4, units are normalized by the variance of ǫ), they allow for comparison both across firms and
across scenarios. The table separates profits accrued in Germany and Denmark for each firm. For
example, in the baseline scenario, we see that Bonus made 48.77 in profits in Denmark, and 45.66
in Germany. If the national border were reduced to a state border, Bonus’s profits in Denmark
would fall to 37.66, while their profits in Germany would rise to 61.47. On overall, Bonus would
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Table 4: Baseline and Counterfactual Profit Estimates

Denmark Germany
Estimates No Fixed No National Estimates No National

Costs Border Costs Border Costs
Bonus (DK) 48.77 41.61 37.66 45.66 61.47

(5.23) (5.25) (4.52) (5.65) (9.96)

Nordtank (DK) 42.70 36.41 32.94 43.56 58.72
(4.49) (4.54) (3.84) (5.28) (9.74)

Micon (DK) 82.87 71.29 64.81 77.88 104.75
(7.32) (7.71) (6.39) (8.08) (16.29)

Vestas (DK) 160.77 140.50 128.86 156.12 208.22
(11.40) (12.46) (10.74) (13.84) (27.77)

WindWorld (DK) 21.57 18.53 16.84 16.74 22.60
(3.58) (3.26) (2.95) (3.04) (4.74)

Enercon (DE) 24.04 36.46 474.18 398.38
(7.85) (6.05) (33.46) (48.68)

Fuhrlaender (DE) 0.77 1.18 15.42 12.43
(0.44) (0.55) (5.10) (4.20)

Nordex (DE) 7.34 6.14 9.32 78.47 63.08
(3.13) (2.14) (1.79) (9.25) (9.68)

Suedwind (DE) 1.44 2.19 21.99 17.61
(0.62) (0.58) (4.76) (4.53)

Tacke (DE) 7.73 11.78 153.84 124.94
(2.60) (2.15) (13.57) (17.23)

Notes: Scale is normalized by variance of ǫ (see Footnote 8). Standard errors in parentheses.

see its total profits increase as a result of the elimination of national border frictions, as gains in
Germany would more than offset loses from increased competition in Denmark.

The situation is different for German firms. When fixed costs are eliminated, the large Ger-
man firms—Enercon and Tacke—take the lion’s share of the gains. However, all German firms—
even the largest firm, Enercon—loose from the entire elimination of national border frictions.
Underlying this result is the significant asymmetry in size and productivity between Germany
and Denmark. The losses German firms face due to increased competition in the larger German
market overwhelm all gains they receive from better access to the Danish market. Our model
estimates Danish firms to be highly productive, so eliminating the national border is quite costly
to German incumbents. Even a small Danish exporter like WindWorld gains from the reduction
of national border frictions since increased profits in the larger German market outweigh its losses
at home. However, WindWorld’s gains are insignificant when compared to the gains of the large
Danish firms, such as Vestas. Overall, we find that because a German firm’s domestic market
is considerably larger than its export market, border frictions protect the profit of German firms
over those of Danish firms.

C.2 Alternative Cost Specifications

We implement several alternative specifications as robustness checks and extensions to our baseline
cost specification. First, we estimate the cost function of the firm without the state border. In
our second alternative, we allow distance costs to vary by manufacturing firm:

cij = φj + βdj · log(distanceij) + βb · borderij + βs · stateij . (3)

5



Note that the difference between this and the baseline specification (2) is that distance cost
coefficients are heterogeneous (βdj vs. βd). This cost function is consistent with Holmes and
Stevens (2012), who document that in U.S. data large firms tend to ship further away, even when
done domestically.1 If heterogeneous shipping costs were present in the wind turbine industry,
they might bias our baseline estimate of the border effect upward through a misspecification of
distance costs, since smaller firms would not export due to higher transport costs instead of the
border effect.

In a third alternative specification, we allow the per-megawatt cost of a project and the
impact of national boundaries to vary by project size,

cij = φj + βd · log(distanceij) + βb · borderij + βs · stateij + γ1 · Si + γ2 · borderij · Si. (4)

The primary purpose of this specification is to investigate economies of scale in the variable border
cost. If variable border cost is primarily generated by a single per-project cost that does not vary
with size, then γ2 will be negative and the border will matter relatively less for large projects than
for small, since the cost is amortized across a more electric capacity. On the other hand, if the
variable border costs are proportional to project size, as they would be if costs are connected to
delivery or legal liability associated with the value of cross-border contracts, then γ2 will be small
in magnitude and border costs will remain important even for large projects. The size coefficient,
γ1, affects all active producers equally and is meant to control for the fact that the competitive
fringe is made up of small firms and is less likely to have the resources to serve large projects.

The left-hand panel of Table 5 contains the estimates of the heterogeneous distance cost
specification presented in (3). The border coefficients remain strongly significant, indicating that
they are not an artifact of heterogeneity in distance costs. Turning to the distance costs themselves,
small firms do not have systematically higher distance costs. Two small firms in our data, Sued-
wind and Nordex, are estimated to be distance loving, as they built several turbines in locations
further away from their plants. While a formal likelihood ratio test rejects the null hypothesis of
homogeneous distance costs, the estimation results indicate that heterogeneous distance costs are
not driving cross-border differences in this industry. Therefore, we use our homogeneous distance
cost specification for the counterfactuals in the following section.

The last column of Table 5 contains estimates from the size-varying per-megawatt cost
specification, (4). The coefficient of interest is the interaction term, γ2, which is negative, but
neither economically nor statistically significant. (The average project size is 1 megawatt.) This
is evidence that the variable national border cost does in fact scale with project size, and is not
simply a per-project “hassle cost” that might be amortized away when a project is large. The
coefficient on project size, γ1, is significant and reflects that the fringe firm has a more difficult time
winning large projects independent of the border. This is likely due to reputation effects and other
practical difficulties which prevent small fringe firms from competing for large projects. Overall,
these results provide support for our baseline assumption that the national border variable cost
scales with project size.

1They rationalize this observation in a model where heterogeneous firms invest in their distribution networks.
Productive firms endogenously face a lower “iceberg transportation cost.”
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Table 5: Alternative Specifications

Heterogeneous Economies
Distance Costs of Scale

National Border Variable Cost, βb 0.938 1.246
(0.285) (0.253)

State Border Variable Cost, βs 0.683 0.650
(0.240) (0.224)

Log Distance Cost, βd 0.535
(0.092)

Project Size, γ1 -0.723
(0.108)

Project Size × Border, γ2 -0.075
(0.054)

Firm specific coefficients
Fixed Effects, ξj Distance Costs, βdj Fixed Effects, ξj

Bonus (DK) 2.305 0.479 1.951
(0.280) (0.220) (0.226)

Nordtank (DK) 3.051 1.040 1.998
(0.342) (0.272) (0.233)

Micon (DK) 3.138 0.680 2.553
(0.263) (0.188) (0.219)

Vestas (DK) 4.477 1.189 3.243
(0.278) (0.196) (0.216)

WindWorld (DK) 1.215 0.271 1.111
(0.348) (0.188) (0.262)

Enercon (DE) 3.823 0.490 3.340
(0.243) (0.177) (0.223)

Fuhrlaender (DE) 0.963 1.863 0.099
(0.403) (0.339) (0.329)

Nordex (DE) 0.988 -0.437 1.684
(0.355) (0.232) (0.245)

Suedwind (DE) 0.226 -0.149 0.519
(0.519) (0.305) (0.310)

Tacke (DE) 2.401 0.131 2.238
(0.259) (0.180) (0.228)

Log-Likelihood -2290.86 -2324.05
N 1225 1225

Notes: Standard errors in parentheses.

C.3 Robustness to Local Unobservables, Economies of Density, and

Spatial Collusion

In order to derive the pricing equation, our model assumes that turbine manufacturers are in-
dependently maximizing project-level profits and that the unobservable shock to project owners’
profits, ǫℓij , is unknown to firms, but drawn from a known distribution which is independent across
projects and firms. Thus, we abstract away from the existence of spatial autocorrelation of un-
observables across projects, economies of density in project location, and spatial collusion among
turbine manufacturers. This section assesses whether this assumption has the potential to bias
our estimate of the border effect.

There are several reasons for being concerned about the independence assumption which
underlies the pricing equation. The assumption will be violated if firms directly observe sources of
firm-project cost variation which are not explicitly controlled for by the model. While we feel that
firms’ productivity levels, firm-project distances, and the border dummy are the primary deter-
minants of costs, other potential sources of variation could relate to unobservable local conditions
being more amenable to a particular firm (e.g., local politics or geographic features of an area
could result in lower cost for some firms). The independence assumption will also be violated if
economies of density can be realized by a firm constructing several projects located geographically
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close together. Economies of density might be present if, for example, clustering projects together
reduces travel costs for routine maintenance. Such economies of density might make the individual
projects less expensive to maintain on a per-unit basis, leading firms with nearby installed projects
to have a cost advantage over other firms that is not recognized in our model. Finally, if firms are
colluding, then they are not maximizing prices, and the entire model is misspecified.

The existence of local unobservables would generate spatial autocorrelation in the error
terms between projects which are geographically close. These could be due to unobserved char-
acteristics of the terrain or local population which favor one manufacturer over another. Such
an unobservable could also represent a spatially collusive agreement between firms to advantage
a particular firm in a particular region. The existence of these unobservables would violate our
assumption that the errors are independent across projects. Moreover, if firms are responding to
economies of density of projects, firms pricing decisions become dynamic in nature. Since winning
a project today lowers the firms’ costs on other projects in the future, firms would not choose
prices to maximize project-level profits, but rather the present discounted value of profits on this
project and future projects. In short each of these forces—spatial unobservables, economics of
density and collusion—would lead firms’ projects to be more tightly clustered together than our
model would predict, leading to spatial autocorrelation in firms’ error terms across projects. To
test for the presence of spatial autocorrelation, we consider the following parametric model for the
error term:

ǫj = γ + ψWǫj + νi. (5)

Here, ǫj is the vector of private shocks for firm j in all projects, γ is Euler’s constant—the
mean of the extreme value distribution, W is a known spatial weight matrix that determines the
degree of influence one project has on another, and νi are independent and identically distributed
mean-zero shocks. The scalar ψ determines the degree of spatial autocorrelation, we wish to test
the null hypothesis that spatial autocorrelation is not present, i.e., that ψ = 0 and the ǫij are in
fact independent across projects.

In order to perform the test, we must specify the spatial weight matrix W . An element
of the spatial weight matrix, Wik provides an indication of how strongly project k is related to
project i. Clearly many different specifications are possible, including inverse distance (measured
either directly or though a road network), inclusion within the same region, or nearest neighbor
adjacency. In practice, we specify W as,

Wik =

{
1 if dist(i, k) < 30 km,

0 otherwise,

where distance is the direct distance (as the crow flies) in kilometers between projects i and j.2

We are unable to directly test for spatial autocorrelation in ǫℓij because as with all discrete
choice models, ǫℓij is not directly recoverable. Instead, we follow Pinkse and Slade (1998) and test
our results for spatial autocorrelation using the generalized errors. The generalized errors are the
expectation of ǫℓij conditioned on the observed data and the model being correctly specified. Given
the structure of our model, the generalized errors can be derived using the extreme-value density

2Our results are robust to raising or lowering the distance cutoff and using a specification of W based on inverse
distance.
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function,3

ǫ̂ℓij =




γ − log ρℓij if yℓij = 1,

γ +
ρℓij

1−ρℓij
log ρℓij if yℓij = 0.

Again, γ represents Euler’s constant—the unconditional expectation of the extreme value distri-
bution. While the derivation of these expectations is algebraically tedious, the result is intuitive:
the more likely a manufacturer j is to be selected by the project manager, the lower ǫℓij must be
in order for selection to occur. Hence, ǫ̂ℓij is decreasing in the ex-ante probability of firm j being
selected. The fact that the distribution of ǫ̂ℓij conditional on j not being chosen is independent
of the actual choice observed in market i is a consequence of the well known independence of
irrelevant alternatives (IIA) property of extreme-value discrete choice models. Note that, if the
null hypothesis of no auto-correlation is violated, ǫ̂ℓij will be misspecified. Nonetheless, they are
useful to conduct a hypothesis test for ψ = 0.

Table 6: Results from Auto-Correlation Tests

Manufacturer ψ̂ Std. Error t-Stat.

Fringe 0.026 0.008 3.400
Bonus (DK) 0.028 0.006 4.932
Nordtank (DK) 0.024 0.004 6.177
Micon (DK) 0.030 0.005 6.544
Vestas (DK) 0.033 0.005 6.806
WindWorld (DK) 0.029 0.007 4.203
Enercon (DE) 0.048 0.007 6.651
Fuhrlaender (DE) 0.035 0.006 5.847
Nordex (DE) 0.045 0.010 4.393
Suedwind (DE) 0.042 0.014 2.898
Tacke (DE) 0.033 0.005 6.879

We can use ordinary least squares to estimate ψ from the equation,

ǫ̂j = γ + ψWǫ̂j + νi

and test whether ψ = 0. Note that, the estimate we generate, ψ̂, is only consistent under the null
hypothesis since the null is assumed in the construction of ǫ̂j and ordinary least squares is only
consistent if ψ = 0.

The results are reported in Table 6.4 While the magnitude of the estimated ψ̂ is small,
the test strongly rejects the null hypothesis for every firm, due in part to the the high precision
of the estimates. We conclude that some degree of spatial autocorrelation is present, although it
appears to be mild.

The presence of spatial autocorrelation has the potential to bias our estimate of the border
effect. In particular, if spatial autocorrelation is due to cost or demand advantages in installing
near already completed projects constructed by the same manufacturer, and if exporters have
a smaller installed base within a country than do domestic firms, then the border effect may be

3The derivation is available from the authors upon request.
4It is important that the test be conducted with heteroskedasticity-robust variance estimates, since there is

little reason to believe that the generalized errors are homoscedastic.
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capturing differences in the installed bases of foreign and domestic firms in addition to the variable
cost of exporting. Alternatively, if serial correlation is due to local unobserved characteristics then
the location of previous installations, while not cost reducing in and of themselves, serve as proxies
for unobservable local conditions. In this spirit, we propose the following specification to check
the robustness of our results to mild spatial autocorrelation. We re-estimate the model with the
augmented cost function,

cij = φj + βd · log(distanceij) + βb · borderij + βs · stateij + βc · installedij ,

where,5

installedij =

{
1 if firm j installed a turbine within 30km of project i between 1991 and 1994,

0 otherwise.

The new coefficient, βc is able to capture the relationship between previously installed
turbines and the costs of future projects. We are unable, however, to determine whether βc is a
causal effect, a proxy for local unobservables, or some combination of the two. Firms within our
model continue to price according to static profit maximization. They do not take into account
the possibility that building a turbine will make nearby projects less expensive in the future. This
is consistent with the idea that the existence of local installations being merely a proxy variable
and having no causal impact on future costs.

The results from this robustness specification are presented in Table 7. The coefficient on
having a nearby installation has the expected negative sign (nearby installations are indicative of
lower costs) and is of substantial magnitude. The estimates of both distance costs, βd and variable
border costs, βb both decrease slightly, but remain strongly significant. The estimated impact of
the border actually increases to being equivalent to a 9.8-fold (exp(0.92/0.4)) increase in distance
(from an 8-fold increase (exp(1.151/0.551)) in column 2 of Table 3). Overall, these results appear
to indicate that while unobservable local conditions of economies of density may induce some
spatial autocorrelation between projects, the effect is mild and is not substantially impacting our
primary results on the size of the border effect. In future work, we hope to investigate whether
there is a causal effect of installations on the cost of future projects, but this question will require
a fully dynamic pricing model which is outside the scope of our investigation of border costs.

5We also experimented with including in the cost function the distance to the nearest installed project and
using only projects installed in 1993-1994, and obtained qualitatively similar results.
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Table 7: Robustness Check: Nearby Installed Turbines

Coefficient Std. Error

National Border Variable Cost, βb 0.917 (0.251)
State Border Variable Cost, βs 0.633 (0.228)
Log Distance Cost, βd 0.401 (0.092)
Nearby Installation, βc -1.199 (0.107)
Firm Fixed Effects, ξj

Bonus (DK) 1.357 (0.238)
Nordtank (DK) 1.562 (0.243)
Micon (DK) 2.118 (0.226)
Vestas (DK) 2.757 (0.227)
WindWorld (DK) 0.675 (0.266)
Enercon (DE) 3.142 (0.220)
Fuhrlaender (DE) 0.311 (0.335)
Nordex (DE) 1.389 (0.255)
Suedwind (DE) 0.398 (0.309)
Tacke (DE) 2.026 (0.225)

Log-Likelihood -2263.27
N 1225

Appendix D Computational Method

D.1 Estimation of the Project Bidding Game

We formulate the estimation of the project bidding game as a constrained optimization prob-
lem.The objective is to maximize the likelihood function subject to satisfying the firm-project
specific winning probabilities expressions that come out of our model. We reformulate the prob-
lem defined in (10) for the computational implementation. The reformulated constraints are
mathematically equivalent to those in (10). They come with two major advantages: First, when
we reformulate the system maximizing the log-likelihood instead of the likelihood function, and
rewrite the constraints, we are removing most of the nonlinearity. Second, winning probabilities
only affect their respective equation and the adding-up constraint for the respective project. The
sparse structure of the Jacobian of the constraints makes this large optimization problem feasible.
The reformulated problem is

max
θ, ρ

∑

ℓ∈{D,G}

Nℓ∑

i=1

|Jℓ|∑

j=0

yℓij log ρ
ℓ
ij

subject to: log ρℓij − log ρℓi0 = ξj − βd · distanceij − βb · borderij − βs · stateij −
1

1− ρℓij
|Jℓ|∑

k=1

ρℓik + ρℓi0 = 1 for ℓ ∈ {D,G}, i ∈ {1, ..., Nℓ}, j ∈ J .

For the baseline estimation, there are 11 constraints for every German project, and 7
constraints for every Danish project (|JG| = 10 and |JD| = 6 plus one fringe firm in every market).
Since we have 929 German and 296 Danish projects, this aggregates to 12,291 constraints. In
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our baseline specification we are choosing 12,304 variables (13 structural parameters and 12,291
equilibrium win probabilities for each firm in each market)

We use the constrained optimization solver KNITRO to solve the problem. To improve
speed and accuracy of the estimation, we hand-code the analytical derivatives of the object of
function and the constraints and provide the sparsity structure of the Jacobian to the solver. In
order to find a global maximum we pick 10 random starting values for the structural parameters.
The estimation converges to the same solution for all attempted starting values.

We calculate the covariance matrix of the parameter estimates using the outer product
rule:

1. First, we calculate the score of each winning firm project pair, ∂ log ρ∗i /∂θ, using numer-

ical derivatives. This involves perturbing the θ̂ vector. Note that the step size to perturb θ should
be larger than the numerical tolerance level of the equilibrium constraints. Then the equilibrium
constraints are resolved.

2. We then calculate the inverse of the covariance matrix:

Ŝ(θ̂) =
N∑

i=1

∂ log ρ∗i (θ̂)

∂θ

∂ log ρ∗i (θ̂)

∂θ

′

.

D.2 Counterfactuals

The point estimate θ̂ automatically satisfies the equilibrium constraints in the benchmark scenario
with fixed entry and variable border costs. In the counterfactual “No fixed border costs” we
use θ̂ to then resolve the equilibrium constraints, with every firm being active in every market,
|JD| = |JG| = 10. In the counterfactual “No national border costs”, we solve the same system of
equilibrium constraints with the variable national border cost coefficient set equal to the variable
state border cost.

We use a parametric bootstrap procedure to calculate the standard errors for our coun-
terfactuals. We draw 200 parameter vectors from the distribution of estimated parameters (mul-

tivariate normal distribution with mean θ and covariance matrix Ŝ(θ̂)−1). First we resolve the
baseline equilibrium constraints, then the constraints for the scenario with no fixed entry costs,
and finally the constraints for the no border costs scenario (with each firm active in every market
and the variable border costs coefficient set to zero). We store the equilibrium outcomes from each
of these draws and use them to calculate the standard errors for our counterfactuals.
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Figure 1: KW Capacity Histograms by Market
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Notes: An observation is average kw capacity of turbines in a project. Years 1995 and 1996 only.

Figure 2: Tower Height Histograms by Producer and Market
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Figure 3: KW Capacity Histograms by Producer and Market
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Figure 4: Per KW List Prices of Various Turbines Offered in 1995-1996
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